Data Abstraction

UW CSE 160
Spring 2015

What is a program?

* What is a program?

— A sequence of instructions to achieve some particular
purpose

* What is a library?

— A collection of functions that are helpful in multiple
programs

* What is a data structure?
— A representation of data, and

— Routines to manipulate the data
* Create, query, modify

Why break a program into parts?

e Easier to understand each part

— Abstraction: When using a part, understand only
its specification (documentation string); ignore its
implementation

e Easier to test each part
* Reuse parts

Breaking a program into parts:
the parts, and how to express them

Organizing the program & algorithm:

* Function (procedure)

e Library (collection of useful functions)

* Data structure (representation + methods)

Organizing the code (related but not the samel):
* Files

 Modules

* Namespaces

Namespace

* Disambiguates duplicate variable names

 Examples:

— math.sin

— File system directories

®e0o0o [E] Documents (o)
EIENE = [FT @ 15
¥ DEVICES Name Size Kind
E Disk > D EarthCube Jan 18, 2012, 5:09 PM - Folder 2
= . > D SIGM0O2012_demopc Jan 15, 2012, 4:12 PM - Folder
.§ Macintosh HD
v D Courses Jan 13, 2012, 1:14 PM - Folder
¥ PLACES v [cssE Today, 2:27 PM -- Folder e
.;A!Applica“ms v [wiki Today, 2:44 PM — Folder
E Desktop > [:I lectures Today, 2:45 PM - Folder
= |:| Schedule.wiki Jun 18, 2012, 12:19 PM 4 KB Document
_
{E] Drophox v @ 355|gnments Jun 18, 2012, 2:52 AM - Folder
_ > [:I mwitter Jun 18, 2012, 11:45 AM - Folder
(] AstroMeeting » [benfords-law Jun 18, 2012, 3:03 AM -~ Folder
& weka-3-6-3 » [assignmentl Jun 18, 2012, 3:03 AM - Folder
a| Silverlight.dmg » [wwitter_scratch Jun 18, 2012, 2:53 AM == Folder
,& macros.tex > D hwl Jun 18, 2012, 2:49 AM == Folder
S SEARCIICE > [:I social-network Jun 17, 2012, 9:32 PM - Folder
i |:| Ideas.wiki Jun 17, 2012, 9:32 PM 1.B Document
L) Today » [treatmentefficacy Jun 17, 2012, 8:58 PM - Folder
I\'LJI Yesterday > [:I prochronisms Jun 15, 2012, 11:34 AM - Folder
.\LJ. Past Week |:| Makefile Jun 13, 2012, 11:17 PM 4 KB Plain text
(3] All Images » [microarray May 17, 2012, 6:56 PM — Folder
@AII Mavies > [:I assignment3 May 9, 2012, 11:17 PM - Folder
@AII Documents > [:I assignment2 Apr B, 2012, 1:39 PM - Folder .
notes.txt Jun 17, 2012, 9:32 PM 4 KB Smult-ument i

» [handouts

Jun 17, 2012, 9:32 PM

Folde:

346 items, 21.31 GE available

Review:
Accessing variables in a namespace

import math
. math.sin ...

import networkx as nx

' -

module alias
name

g = nx.Graph()

from networkx import Graph, DiGraph Graphand DiGraph are now
available in the global namespace

g = Graph()

Recall the design exercise

 We created a module or library: a set of related
functions

 The functions operated on the same data structure

— a dictionary associating words with a frequency count
— a list of tuples of measurements

e Each module contained:
— A function to create the data structure
— Functions to query the data structure

— We could have added functions to modify the data
structure

Abstraction: Ignoring/hiding some aspects of a thing

* In programming, ignore everything except the specification or
interface

 The program designer decides which details to hide and to expose

Procedural abstraction:
* Define a procedure/function specification
 Hide implementation details

Data abstraction:
 Define what the datatype represents
 Define how to create, query, and modify

 Hide implementation details of representation and of operations
— Also called “encapsulation” or “information hiding”

Data abstraction

* Describing field measurements:

— “A dictionary mapping strings to lists, where the
strings are sites and each list has the same length and
its elements corresponds to the fields in the data file.”

— “FieldMeasurements”
 Which do you prefer? Why?

(This must appear in the documentation string of
every function related to field measurements!)

Representing a graph

* A graph consists of:
— nodes/vertices
— edges among the nodes

* Representations:

— Set of edge pairs
* (a, a),(a, b), (a, c), (b, c), (c, b)

— For each node, a list of neighbors
e {a:[a, b, c], b:[c], c:[b]}

— Matrix with boolean for each entry _lalblc
B
b | /
B

10

Text analysis module ¥ program to compute top 5.

(group of related functions) wordcounts = read words (filename)

representation = dictionary

def

def

def

def

result = topk (wordcounts, 5)

read words (filename) :
"""Return dictionary mapping each word in filename to its frequency."""
wordfile = open (filename)
word list = wordfile.read() .split()
wordfile.close ()
wordcounts_dict = {}
for word in word list:
count = wordcounts_dict.setdefault (word, 0)
wordcounts_dict[word] = count + 1

return wordcounts_dict

word count (wordcounts_dict, word):
"""Return count of the word in the dictionary. """
if wordcounts_dict.has_key(word) :
return wordcounts_dict[word]
else:

return 0O

topk (wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""
counts _with words = [(c, w) for (w, c) in wordcounts_dict.items()]
counts_with words.sort (reverse=True)

return counts _with words[0:k]

total words (wordcounts_dict):
"""Return the total number of words.""" 11

return sum(wordcounts dict.values())

Problems with the implementation

program to compute top 5:
wordcounts = read words (filename)
result = topk (wordcounts, 5)

* The wordcounts dictionary is exposed to the client:
the user might corrupt or misuse it.

* |f we change our implementation (say, to use a list),
it may break the client program.

We prefer to

— Hide the implementation details from the client
— Collect the data and functions together into one unit

12

Datatypes and classes

* A class creates a namespace for:
— Variables to hold the data

— Functions to create, query, and modify

e Each function defined in the class is called a method
— Takes “sel£f” (a value of the class type) as the first argument

* A class defines a datatype
— An object is a value of that type

— Comparison to other types:
 Typeis int, valueis 22

* Type is the class, value is an object also known as an
instantiation or instance of that type

13

Text analysis module ¥ program to compute top 5.

(group of related functions) wordcounts = read words (filename)

representation = dictionary

def

def

def

def

result = topk (wordcounts, 5)

read words (filename) :
"""Return dictionary mapping each word in filename to its frequency."""
wordfile = open (filename)
word list = wordfile.read() .split()
wordfile.close ()
wordcounts_dict = {}
for word in word list:
count = wordcounts_dict.setdefault (word, 0)
wordcounts_dict[word] = count + 1

return wordcounts_dict

word count (wordcounts_dict, word):
"""Return count of the word in the dictionary. """
if wordcounts_dict.has_key(word) :
return wordcounts_dict[word]
else:

return 0O

topk (wordcounts_dict, k=10):

"""Return list of (count, word) tuples of the top k most frequent words."""
counts _with words = [(c, w) for (w, c) in wordcounts_dict.items()]
counts_with words.sort (reverse=True)

return counts _with words[0:k]

total words (wordcounts_dict):
"""Return the total number of words.""" 14

return sum(wordcounts dict.values())

H The type of wc is # program to compute top 5:
TEXt anaIySIS) WordCounts g = WordCounts ()

wWC =

wc.read words (filename)

as a CIaSS result = wc. topk (5)

class WordCounts: took takes L— Defines a class
"""Represents the words in a file.""" P (a datat e)
Internal representation: 2 arguments yp
variable wordcounts is a dictionary mapping words to their frequenc named
- WordCounts
————)
def read words(self, filename): The type of self
"mnpopulate a WordCounts object from the given fi| ISWordCounts o
word list = open(filename) .read() .split() Modifies a
self.wordcounts = {} — WordCounts
for w in word list: object
self.wordcounts.setdefault (w, O0) el Trerdls does
self.wordcounts([w] +=1 —_]
— not return a value; |
def word count(self, word): — itmutates self
"""Return the count of the given word"""
return self.wordcounts[word]
"""Return a list of the top k most frequent words in order""" WordCounts
scores_with words = [(c,w) for (w,c) in self.wordcounts.items()] —]
scores_with words.sort (reverse=True) ObJeCt
return scores_with words [0:k] The namespace of a
WordCounts object:
def total words(self): wordcounts //m
"""Return the total number of words in the file"""
read words —
return sum(self.wordcounts.values()) —
word count
Each function in a class is called a method. topk M
Its first argument is of the type of the class. total words

program to compute top 5: Weird constructor: it
. does not do any work

wc = WordCounts

_
] You have to call a
wc.read words (filename) ——

mutator immediately

afterward
result = wc.topk(3) A value of type
WordCounts Two
— equivalent
result = WordCounts. topk (wc, 5) calls

| J |\] —
i !

A namespace, A function that takes
like a module two arguments

16

program to compute top 5:

Class With constructor wc = WordCounts (filename)

result = wc.topk(5)

class WordCounts:

"""Represents the words in a file."""
Internal representation:
variable wordcounts is a dictionary mapping words to their frequency

def init (self, filename):
"""Create a WordCounts object from the given file"""
words = open(filename) .read() .split()
self.wordcounts = {}
for w in words:
self.wordcounts.setdefault (w, 0)
self .wordcounts([w] +=1

def word count(self, word):
"""Return the count of the given word"""
return self.wordcounts[word]

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores_with words = [(c,w) for (w,c) in self.wordcounts.items()]
scores_with words.sort (reverse=True)
return scores_with words[0:k]

def total words (self):

"""Return the total number of words in the file"""
return sum([c for (w,c) in self.wordcounts])

17

Alternate # program to compute top 5:

wc = WordCounts (filename)

implementation result = wc. topk (5)

class WordCounts: k

"""Represents the words in a file.""" :
Internal representation: Exact same program!
variable words is a list of the words in the file

def init (self, filename):
"""Create a WordCounts object from the given file"""
self.words = open(filename) .read () .split()

def word count(self, word):
"""Return the count of the given word"""
return self.words.count (word)

def topk(self, k=10):
"""Return a list of the top k most frequent words in order"""
scores with words = [(self.wordcount(w),w) for w in set(self.words)]
scores _with words.sort (reverse=True)
return scores with words[0:k]

The namespace of a
def total words(self): WordCounts object:

"""Return the total number of words in the
return len (self.words)

words
__init —
word count
topk

list
18
total words—jﬁ——%a

Program to plot

. . mydict = read measurements (filename)
Qua ntltatlve result = mydict.Stplot()

analysis

def read measurements (filename) :
"""Return a dictionary mapping column names to data.
Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
columns = dict([(col[0], col[l:]) for col in rawcolumn])
return columns

def tofloat (measurements, columnname) :
"""Convert each value in the given iterable to a float"""
return [float(x) for x in measurements[columnname]]

def STplot (measurements) :
"""Generate a scatter plot comparing salinity and temperature"""

xs = tofloat (measurements, "salt")
ys = tofloat (measurements, "temp")
plt.plot(xs, ys)

plt.show()

def minimumO2 (measurements) :
"""Return the minimum value of the oxygen measurement"""

return min (tofloat (measurements, "o2")) 19

Program to plot
mm = Measurements ()

Qu a ntitative a n a IySiS) mm.read measurements (filename)

result = mm.Stplot()
as a class

class Measurements:
"""Represents a set of measurements in UWFORMAT."""“

def read measurements(self, filename):
"""Populate a Measurements object from the given file.
Assumes the first line of the file is column names."""

datafile = open(filename)

rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[l:]) for col in rawcolumn])
return—ecolumns

def tofloat(self, columnname):
"""Convert each value in the given iterable to a float"""
return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""

xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)

plt.show()

def minimumO2 (self) :
"""Return the minimum value of the oxygen measurement"""

return min (tofloat(self.columns, "o2")) 20

Program to plot
mm = Measurements (filename)

Quantitative analysis, |mo.. et

with a constructor

class Measurements:
"""Represents a set of measurements in UWFORMAT."""“

def init (self, filename):
"""Create a Measurements object from the given file.
Assumes the first line of the file is column names."""
datafile = open(filename)
rawcolumns = zip(*[row.split() for row in datafile])
self.columns = dict([(col[0], col[l:]) for col in rawcolumn])

def tofloat(self, columnname) :
"""Convert each value in the given iterable to a float"""

return [float(x) for x in self.columns[columnname]]

def STplot(self):
"""Generate a scatter plot comparing salinity and temperature"""

xs = tofloat(self.columns, "salt")
ys = tofloat(self.columns, "temp")
plt.plot(xs, ys)

plt.show()

def minimumO2 (self) :
"""Return the minimum value of the oxygen measurement"""

return min (tofloat(self.columns, "o2"))

