
Design Exercise

UW CSE 160

Spring 2015

1

Exercise

Given a problem description, design a module to
solve the problem
1) Specify a set of functions

– For each function, provide
• the name of the function
• a doc string for the function

2) Sketch an implementation of each function
– In English, describe what the implementation needs to

do
– This will typically be no more than about 4-5 lines per

function

2

Example of high-level “pseudocode”

def read_scores(filename)
 ""“Read scores from filename and return a dictionary mapping words to scores"""
 open the file
 For each line in the file,
 insert the word and its score into a dictionary called scores
 return the scores dictionary

def compute_total_sentiment(searchterm):
 """Return the total sentiment for all words in all tweets in the first page of results
returned for the search term"""
 Construct the twitter search url for searchterm
 Fetch the twitter search results using the url
 For each tweet in the response,
 extract the text
 add up the scores for each word in the text
 add the score to the total
 return the total

3

Exercise 1: Text analysis

Design a module for basic text analysis with the following
capabilities:

• Compute the total number of words in a file

• Find the 10 most frequent words in a file.

• Find the number of times a given word appears in the
file.

Also show how to use the interface by computing the top
10 most frequent words in the file testfile.txt

 4

Text Analysis, Version 1

def countwords(filename, word):

 """Given a filename and a word, return the count

of the given word in the given file."""

def top10(filename):

 """Given a filename, return a list of the top 10

most frequent words in the given file, from most

frequent to least frequent."""

def totalwords(filename):

 """Given a filename, return the total number of

words in the file."""

 # program to compute top 10:

result = top10("somedocument.txt")

5

• Pros:

• Cons:

6

Text Analysis, Version 2
def read_words(filename):

 """Given a filename, return a list of words in the

file."""

 def countwords(wordlist, word):

 """Given a list of words and a word, returns a pair

(count, allcounts_dict). count is the number of

occurrences of the given word in the list, allcounts_dict

is a dictionary mapping words to counts."""

def top10(wordcounts_dict):

 """Given a dictionary mapping words to counts, return

a list of the top 10 most frequent words in the

dictionary, from most to least frequent."""

def totalwords(wordlist):

 """Return total number of words in the given list."""

program to compute top 10:

word_list = read_words("somedocument.txt")

(count, word_dict) = countwords(word_list, "anyword")

result = top10(word_dict) 7

• Pros:

• Cons:

8

Text Analysis, Version 3
def read_words(filename):

 """Given a filename, return a dictionary mapping

each word in filename to its frequency in the file"""

def countwords(word_counts_dict, word):

 """Given a dictionary mapping word to counts, return

the count of the given word in the dictionary."""

def top10(word_counts_dict):

 """Given a dictionary mapping word to counts, return

a list of the top 10 most frequent words in the

dictionary, from most to least frequent."""

def totalwords(word_counts_dict):

 """Given a dictionary mapping word to counts, return

the total number of words used to create the

dictionary"""

program to compute top 10:

word_dict = read_words("somedocument.txt")

result = top10(word_dict)
9

• Pros:

• Cons:

10

Analysis

• Consider the 3 designs

• For each design, state positives and negatives

• Which one do you think is best, and why?

11

Changes to text analysis problem

• Ignore stopwords (common words such as
“the”)

– A list of stopwords is provided in a file, one per
line.

• Show the top k words rather than the top 10.

12

Design criteria

• Ease of use vs. ease of implementation
– Module may be written once but re-used many times

• Generality
– Can it be used in a new situation?

– Decomposability: Can parts of it be reused?

– Testability: Can parts of it be tested?

• Documentability
– Can you write a coherent description?

• Extensibility: Can it be easily changed?

13

Exercise 2: Quantitative Analysis

Design a module for basic statistical analysis of files
in UWFORMAT with the following capabilities:

• Create an S-T plot: the salinity plotted against the

temperature.
• Compute the minimum o2 in a file.

UWFORMAT:
line 0: site temp salt o2
line N: <string> <float> <float> <float>

14

Quantitative Analysis, Version 1

import matplotlib.pyplot as plt

def read_measurements(filename):

 """Return a list of 4-tuples, each one of the form

(site, temp, salt, oxygen)"""

def STplot(measurements):

 """Given a list of 4-tuples, generate a scatter plot comparing

salinity and temperature"""

def minimumO2(measurements):

 """Given a list of 4-tuples, return the minimum value of the

oxygen measurement"""

15

Changes

• UWFORMAT has changed:

UWFORMAT2:

line 0: site, date, chl, salt, temp, o2

line N: <string>, <string>, <float>, <float>, <float>, <float>

• Find the average temperature for site “X”

16

From Exercise 1:

def read_words(filename):

 """Given a filename, return a dictionary mapping each

word in filename to its frequency in the file"""

 wordfile = open(filename)

 worddata = wordfile.read()

 word_list = worddata.split()

 wordfile.close()

 wordcounts = {}

 for word in word_list:

 if wordcounts.has_key(word):

 wordcounts[word] = wordcounts[word] + 1

 else:

 wordcounts[word] = 1

 return wordcounts

 17

This “default” pattern is
so common, there is a
special method for it.

setdefault

def read_words(filename):

 """Given a filename, return a dictionary mapping each

word in filename to its frequency in the file"""

 wordfile = open(filename)

 worddata = wordfile.read()

 word_list = worddata.split()

 wordfile.close()

 wordcounts = {}

 for word in word_list:

 count = wordcounts.setdefault(word, 0)

 wordcounts[word] = count + 1

 return wordcounts

 18

This “default” pattern is
so common, there is a
special method for it.

setdefault

for word in word_list:

 if wordcounts.has_key(word):

 wordcounts[word] = wordcounts[word] + 1

 else:

 wordcounts[word] = 1

VS:

 for word in word_list:

 count = wordcounts.setdefault(word, 0)

 wordcounts[word] = count + 1

setdefault(key[, default])
• If key is in the dictionary, return its value.
• If key is NOT present, insert key with a value of default, and return default.
• If default is not specified, the value None is used.

19

