
Sharing, mutability, and
immutability

Ruth Anderson

CSE 160

University of Washington

1

Copying and mutation

list1 = ["e1", "e2", "e3", "e4"]

list2 = list1

list3 = list(list1) # make a copy; also “list1[:]”
print list1, list2, list3

list1.append("e5")

list2.append("e6")

list3.append("e7")

print list1, list2, list3

list1 = list3

list1.append("e8")

print list1, list2, list3

2

Variable reassignment vs. Object mutation

• Reassigning a variable changes a binding, it does
not change (mutate) any object

Reassigning is always done via the syntax:
myvar = expr size = 6

 list2 = list1

• Mutating (changing) an object does not change
any variable binding

Two syntaxes: Examples:
left_expr = right_expr mylist[3] = myvalue

expr.method(args…) mylist.append(myvalue)

3

Changes something about
the object that mylist
refers to

Changes what the
variables
size and list2
are bound to

New and old values

• Every expression evaluates to a value
– It might be a new value

– It might be a value that already exists

• A constructor evaluates to a new value:
 [3, 1, 4, 1, 5, 9]

 [3, 1, 4] + [1, 5, 9]

 mylist = [[3, 1], [4, 1]] # right hand side is a constructor

• An access expression evaluates to an existing value:
 mylist[1]

• What does a function call evaluate to?

4

An aside: List notation

• Possibly misleading notation:

• More accurate, but more verbose, notation:

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

5

Object identity
• An object’s identity never changes
• Can think of it as its address in memory
• Its value of the object (the thing it represents) may change

mylist = [1, 2, 3]

otherlist = mylist

mylist.append(4)

mylist is otherlist ⇒ True
 mylist and otherlist refer to the exact same object

mylist == [1, 2, 3, 4] ⇒ True
 The object mylist refers to is equal to the object [1,2,3,4]
 (but they are two different objects)

mylist is [1, 2, 3, 4] ⇒ False
 The object mylist refers to is not the exact same object
 as the object [1,2,3,4]

The object identity test “is” is rarely used

 6

Object type and variable type

• An object’s type never changes
• A variable can get rebound to a value of a

different type

 Example: The variable a can be bound to an int or a list
a = 5 5 is always an int
a = [1, 2, 3, 4] [1, 2, 3, 4] is always a list

• A type indicates:
– what operations are allowed
– the set of representable values
– type(object) returns the type of an object

7

New datatype: tuple

A tuple represents an ordered sequence of values

Example:

“four” “score” “and” “seven” “years”
tuple

“four” “score” “and” “seven” “years”

“four” “score” “and” “seven” “years”

tuple

8

Tuple operations

Constructors
– Literals: Just like lists, but round the square

brackets
("four", "score", "and", "seven", "years")

– Also (3, 1) + (4, 1) => (3, 1, 4, 1), etc.

Queries
– Just like lists

Mutators
– None!

9

Immutable datatype

• An immutable datatype is one that doesn’t have
any functions in the third category:

– Constructors

– Queries

– Mutators: None!

• Immutable datatypes:

– int, float, boolean, string, function, tuple, frozenset

• Mutable datatypes:

– list, dictionary, set

10

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• The set itself is mutable (e.g. we can add and remove
elements)

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset True

– y in myset always evaluates to the same value

Both conditions should hold until myset is changed

• Mutable elements can violate these goals

• Aside: frozenset must contain immutable values and is
itself immutable (cannot add and remove elements)

11

Not every value is allowed to be a key
in a dictionary

• Keys must be immutable values
– int, float, bool, string, tuple of immutable types

– not: list, set, dictionary

• The dictionary itself is mutable (e.g. we can add and
remove elements)

• Goal: only dictionary operations change the keyset
– after “mydict[x] = y”, mydict[x] y

– if a == b, then mydict[a] == mydict[b]

These conditions should hold until mydict is changed

• Mutable keys can violate these goals

12

Python’s Data Model

• All data is represented by objects
• Each object has:

– an identity
• Never changes
• Think of this as address in memory
• Test with is (but you rarely need to do so)

– a type
• Never changes

– a value
• Can change for mutable objects
• Cannot change for immutable objects
• Test with ==

 13

Mutable and Immutable Types

• Immutable

– numbers, strings, tuples

• Mutable

– Lists, sets and dictionaries

Note: a set is mutable, but a frozenset is immutable

14

Tuples are immuatble
Lists are mutable

def updaterecord(record, position, value):

 """change the value at the given position"""

 record[position] = value

mylist = [1,2,3]

mytuple = (1,2,3)

updaterecord(mylist, 1, 10)

print mylist

updaterecord(mytuple, 1, 10)

print mytuple

15

Mutable and Immutable Types

>>> def increment(uniquewords, word):

... """increment the count for word"""

... if uniquewords.has_key(word):

 uniquewords[word] = uniquewords[word] + 1

 else:

 uniquewords[word] = 1

>>> mywords = dict()

>>> increment(mywords, "school")

>>> print mywords

{'school': 1}

>>> def increment(value):

... """increment the value???"""

... value = value + 1

>>> myval = 5

>>> increment(myval)

>>> print myval

5
16

