Sorting

Ruth Anderson
UW CSE 160
Spring 2015

sorted vs. sort

hamlet = "to be or not to be that is the
question whether tis nobler in the mind to
suffer" .split()

Returns a new sorted
list (does not modify
the original list)

print "hamlet:", hamlet

print "sorted (hamlet) :", sorted(hamlet)
print "hamlet:", hamlet

print "hamlet.sort():", hamlet.sort()

- " « 1
print "hamlet:", hamlet Modifies the list in

place, returns None

e Lists are mutable — they can be changed
— including by functions

Customizing the sort order

Goal: sort a list of names by last name

names = ["Isaac Newton'", "Albert Einstein", '"Niels
Bohr", "Marie Curie", "Charles Darwin", "Louis
Pasteur", "Galileo Galilei", "Margaret Mead"]

print '"names:'", names
This does not work:
print "sorted(names) :", sorted (names)

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

Sort key

* Asort key is a function that can be called on each list element to
extract/create a value that will be used to make comparisons.

 We can use this to sort on a value (e.g. “last_name”) other than the
actual list element (e.g. “first_name last_name”).

 We could use the following sort key so help us sort by last names:

def last name(str):
return str.split(" ") [1]

print 'last name("Isaac Newton"):', last name("Isaac Newton")

Two ways to use a sort key:
1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function

1. Use a sort key to create a new list

Create a different list that contains the sort key, sort it, then extract the relevant part:

names = ["Isaac Newton", "Fig Newton", '"Niels Bohr"]

keyed names is a list of [lastname, fullname] 1lists

keyed names =
yed_ [] 1) Create the new list.

for name in names:

keyed names.append([last name (name), name])

2) Sort the list new list.
If there is a tie in last
names, sort by next
item in list: fullname

sorted names []

sorted keyed names = sorted(keyed_names)tI

for keyed name in sorted keyed names:

sorted names.append(keyed name[l])———

_ 3) Extract the relevant part.
print "sorted names:", sorted names

Digression: Lexicographic Order

Aaron 1,9, 9]
Andrew 2, 1]
Angie 3]
with 1]
withhold 11 1]
withholding 1: 1 1]
Able _

Charlie ;1' 1]
baker ;1' 1,2]
delta 1, 2]

2. Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last name(str):
return str.split(" ") [1]

names = ["Isaac Newton", "Fig Newton", '"Niels Bohr"]

print sorted(names, key = last name)
print sorted(names, key = len) ‘\~§§§::::;;;7\“

def last name len (name):
return len(last name (name))

print sorted(names, key = last name len)

If there is a tie in last
names, preserves
original order of values.

itemgetter is a function
that returns a function

import operator /. Returns a function

operator.itemgetter (2, 7, 9, 10)

Returns a function

| I

10“("dumbstricken")
9) ("homesickness")
10) ("pumpernickel")
7) ("seminaked")

5) ("smirker")

operator.itemgetter (2, 7
operator.itemgetter (2, 5
operator.itemgetter (2, 7,
3
2

~

~

operator.itemgetter (2,
operator.itemgetter (1,

~

= 0 O Jd

~

4

operator.itemgetter (9, 7, 6, 1) ("beatnikism")
operator.itemgetter (14, 13, 5, 1) ("Gedankenexperiment")
operator.itemgetter (12, 10, 9, 5) ("mountebankism")

Using itemgetter

Another way to import,
allows you to can call
itemgetter directly.

from operator import itemgetter-::::;

student score = ('Robert', 8)
itemgetter (0) (student score) = “Robert”
itemgetter (1) (student score) — 8

student scores =
[('Robert', 8), ('Alice', 9), ('Tina', 7)]

e Sort the list by name:
sorted (student scores, key=itemgetter (0))

* Sort the list by score

sorted (student scores, key=itemgetter(l))

Two ways to Import 1temgetter

from operator import itemgetter
student score = ('Robert',6 8)
itemgetter (0) (student score) = “Robert”
itemgetter(l) (student score) — 8

Or

import operator

student score = ('Robert', 8)
operator.itemgetter (0) (student score) = “Robert”
operator.itemgetter (l) (student score) — 38

10

Sorting based on two criteria

Goal: sort based on score;
if there is a tie within score, sort by name

Two approaches:

Approach #1: Use an itemgetter with two arguments
Approach #2: Sort twice (most important sort last)

student scores = [('Robert', 8), ('Alice',6 9),
('Tina', 10), ('James',6 8)]
Approach #1:
sorted (student scores, key=itemgetter (1,0))

Approach #2:

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by score = sorted(sorted by name, key=itemgetter(l))

11

Sort on most important criteria LAST

e Sorted by score (ascending), when there is a tie
on score, sort using name

from operator import itemgetter
student scores = [('Robert', 8), ('Alice', 9), ('Tina', 10), ('James',6 8)]

sorted by name = sorted(student_scores, key=itemgetter (0))
>>> sorted by name

[('Alice', 9), ('James', 8), ('Robert', 8), ('Tina', 10)]

sorted by score = sorted(sorted by name, key=itemgetter (1))
>>> sorted by score
[("James', 8), ('Robert', 8), ('Alice', 9), ('Tina', 10)]

12

More sorting based on two criteria

If you want to sort different criteria in different directions, you
must use multiple calls to sort or sorted

student scores = [('Robert', 8), ('Alice', 9), \
('Tina', 10), ('James', 8)]

Goal: sort score from highest to lowest; if there is a tie within score,
sort by name alphabetically (= lowest to highest)

sorted by name = sorted(student scores, key=itemgetter (0))
sorted by hi score = sorted(sorted by name,
key=itemgetter (l) , reverse=True)

Remember: Sort on most important criteria LAST 13

Sorting: strings vs. numbers

e Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])

[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

14

