
Sets

Ruth Anderson

CSE 160

University of Washington

1

Sets

• Mathematical set: a collection of values, without
duplicates or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create

– How to query (look up) and perform other operations
• (Can result in a new set, or in some other datatype)

– How to modify

Answer: http://docs.python.org/2/library/stdtypes.html#set

3

2

1

1

4

3

5

2

http://docs.python.org/2/library/stdtypes.html#set
http://docs.python.org/2/library/stdtypes.html#set

Two ways to create a set

1. Direct mathematical syntax:
odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

Cannot express empty set: “{}” means something else 

2. Construct from a list: (also from a tuple or string)

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([]) # or set()

 Python always prints using this syntax above

3

Set operations
odd = { 1, 3, 5 }

prime = { 2, 3, 5 }

• membership  Python: in 4 in prime  False
• union  Python: | odd | prime  { 1, 2, 3, 5 }
• intersection  Python: & odd & prime  { 3, 5 }
• difference \ or - Python: - odd – prime  { 1 }

 Think in terms of set operations,
 not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:

iterates over items in arbitrary order

for item in myset:

 …

But we cannot index into a set to access a specific element.
4

Modifying a set

• Add one element to a set:
myset.add(newelt)

myset = myset | { newelt }

• Remove one element from a set:
myset.remove(elt) # elt must be in myset or raises err
myset.discard(elt) # never errs
myset = myset - { elt }

What would this do?
myset = myset - elt

• Choose and remove some element from a set:
myset.pop()

5

Practice with sets

z = {5,6,7,8}

y = {1,2,3,"foo",1,5}

k = z & y

j = z | y

m = y – z

z.add(9)

6

List vs. set operations (1)

Find the common elements in both list1 and list2:
out1 = []
for i in list2:
 if i in list1:
 out1 .append(i)

We will learn about list comprehensions later
out1 = [i for i in list2 if i in list1]

Find the common elements in both set1 and set2:
set1 & set2

Much shorter, clearer, easier to write!

7

List vs. set operations (2)

Find the elements in either list1 or list2 (or both) (without duplicates):
out2 = list(list1) # make a copy
for i in list2:
 if i not in list1: # don’t append elements already in out2
 out2.append(i)
OR
out2 = list1+list2
for i in out1: # out1 (from previous example), common
 # elements in both lists
 out2.remove(i) # Remove common elements

Find the elements in either set1 or set2 (or both):
set1 | set2

8

List vs. set operations (3)

Find the elements in either list but not in both:

out3 = []

for i in list1+list2:

 if i not in list1 or i not in list2:

 out3.append(i)

Find the elements in either set but not in both:

set1 ^ set2

9

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple

– not: list, set, dictionary

• The set itself is mutable (e.g. we can add and remove
elements)

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset  True

– y in myset always evaluates to the same value

Both conditions should hold until myset is changed

• Mutable elements can violate these goals

• Aside: frozenset must contain immutable values and is
itself immutable (cannot add and remove elements)

10

Not every value may be placed in a set

• Set elements must be immutable values
– int, float, bool, string, tuple
– not: list, set, dictionary

• Goal: only set operations change the set
– after “myset.add(x)”, x in myset  True
– y in myset always evaluates to the same value
Both conditions should hold until myset itself is changed

• Mutable elements can violate these goals
list1 = ["a", "b"]

list2 = list1

list3 = ["a", "b"]

myset = { list1 }  Hypothetical; actually illegal in Python
list1 in myset  True
list3 in myset  True
list2.append("c")  not modifying myset “directly”
list1 in myset  ??? modifying myset “indirectly” would lead to different results
list3 in myset  ???

11

