
University of Washington
CSE 140 Introduction to Data Programming

Winter 2013

Midterm exam

February 6, 2013

Name: Solutions

UW Net ID (username):

This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 18
questions and 14 pages (including this one), totaling 90 points. Before you start, please check your
copy to make sure it is complete. Turn in all pages, together, when you are finished. Write your
initials on the top of ALL pages (in case a page gets separated during test-taking or grading).

Please write neatly; we cannot give credit for what we cannot read.
Good luck!

Page Max Score

2 6
3 6
4 9
5 6
6 6
7 10
8 5
9 5
10 3
11 12
12 8
13 6
14 6

Total 90

Initials: Solutions 1 SHORT ANSWER

1 Short answer

1. An immutable data structure is one that cannot change after being created. Give three reasons
to use immutable data. Give reasons that are as different from one another as possible. Use
no more than one sentence each.

(a) Immutable objects can be put in a set or used as a key to a dictionary.

(b) Immutable objects protect your data structures from being corrupted by a
client of your code or by your own code.

(c) Immutable objects are easier to reason about, since you don’t have to keep
track of what their current value is.

(d) Use of an immutable object is documentation: it is a signal to other pro-
grammers that the object will not change.

Here are some common incorrect answers:

• Use an immutable object to prevent change. (That is repeating the definition,
not giving a reason.)

• Efficiency. (This could be an acceptable answer with more explanation, but
we haven’t dwelled on this in CSE 140.)

• Repeated use of the same value. (This is possible with a mutable structure:
just don’t change it.)

• More convenient to use. (In what way, or for what purpose?)

2

Initials: Solutions 2 EXECUTE PYTHON EXPRESSIONS

2 Execute Python expressions

Execute each of the following expressions.

• If it executes without an error, then:

value state the value that it evaluates to

• If it suffers an error during evaluation:

error describe the error (in one phrase — a brief explanation in your own words)

frame state the name of the current environment frame: “global” or a function name

operator state the operator or operation that caused the error, such as + or function invo-
cation

arguments state the values to which the operator was being applied

Your answer will contain either part “value”, or parts “error”, “frame”, “operator”, and “argu-
ments”.

Hint: none of these is a syntax error.

2. len(set(1, 2, 3))

value

error wrong number of arguments

frame global

operator function invocation

arguments set function and 1 and 2 and 3

3. len(set([1, 2, 3]))

value 3

error

frame

operator

arguments

3

Initials: Solutions 2 EXECUTE PYTHON EXPRESSIONS

4. len(set([(1, 2), (3, 4)]))

value 2

error

frame

operator

arguments

5. len(set(([1, 2], [3, 4])))

value

error placing mutable value in a set

frame set

operator set constructor

arguments
list

1 2 and
list

3 4

6. len(set(((1, 2), (3, 4))))

value 2

error

frame

operator

arguments

4

Initials: Solutions 2 EXECUTE PYTHON EXPRESSIONS

The following questions assume these definitions:

def double(x):
return x + x

def at42(f): # The name "at42" is short for "apply_to_42"
return f(42)

7. at42(double)

value 84

error

frame

operator

arguments

8. at42(double(42))

value

error invoking a non-function or int is not callable.

frame at42

operator function invocation

arguments 84 and 42

It is not correct to say 84 does not exist (it certainly does) nor that at42 expects
a function (Python does no checking of argument types at function calls: the
argument gets passed in, and the error happens within at42).

5

Initials: Solutions 2 EXECUTE PYTHON EXPRESSIONS

9. double(at42(42))

value

error invoking a non-function or int is not callable

frame at42

operator function invocation

arguments 42 and 42

10. double(double)(42)

value

error cannot add two functions

frame double

operator +

arguments function double and function double

6

Initials: Solutions 3 DRAW THE ENVIRONMENT

3 Draw the environment

11. Draw the entire environment, including all active environment frames and all user-defined
variables, at the moment that the division operation is performed.

def sum(input):

result = 0

for i in input:

result = result + i

return result

def length(input):

return len(input)

def mean(input):

return float(sum(input)) / length(input)

input = [5, 2, 2, 3]

print sum(input), length(input), mean(input)

Global variables:

* sum ----> <function sum(input)>

* length -> <function length(input)>

* mean ---> <function mean(input)>

* input --> [5, 2, 2, 3]

^

mean: |

* input ----*

7

Initials: Solutions 4 DEBUGGING

4 Debugging

You have written the following program (in file printdicts.py), and you have successfully loaded
it into the Python interpreter (say, by pressing F5 within IDLE while viewing printdicts.py, or
alternately by typing from printdicts import *).

print_many_dicts(dicts):
"""Print each dictionary in the input, which is a list of dictionaries."""
for dict in dicts:

print_dict(dict)

def print_dict(dict):
"""Print the given dictionary."""
print ’{’
for k in dict:

print ’ ’ + str(k) + ’: ’ + str(dict[k]) + ’,’
print ’}’

Here is an example of using it in the interpreter:

>>> print_many_dicts([{1:2, 3:4}, {"abra":"cadabra", "hello":"world"}])
{
1: 2,
3: 4,

}
{
hello: world,
abra: cadabra,

}

12. You type an expression to the interpreter, and you get the following output:

>>> ... you typed your expression here ...
{
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "printdicts.py", line 4, in print_many_dicts
print_dict(dict)

File "printdicts.py", line 10, in print_dict
print ’ ’ + str(k) + ’: ’ + str(dict[k]) + ’,’

TypeError: list indices must be integers, not str

Write the smallest expression that you can that produces this exact output.

print many dicts([["a"]])

8

Initials: Solutions 4 DEBUGGING

13. After typing a different expression to the interpreter, you get the following output.
The only difference from the previous problem is the last line of output.

>>> ... you typed your expression here ...
{
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "printdicts.py", line 4, in print_many_dicts
print_dict(dict)

File "printdicts.py", line 10, in print_dict
print ’ ’ + str(k) + ’: ’ + str(dict[k]) + ’,’

IndexError: list index out of range

Write the smallest expression that you can that produces this exact output.

print many dicts([[3]])

9

Initials: Solutions 4 DEBUGGING

14. In no more than one sentence, explain the following Python error and how it could arise:

TypeError: unhashable type: ’list’

A list is mutable, but you have tried to use it in a context where only immutable
objects are permitted, such as in a set or as a dictionary key.

It is wrong to state that you are trying to convert a list into a set (that’s not a
problem: for example, set([1,2])).

It is wrong to state that you are trying to modify a list or anything else.

10

Initials: Solutions 5 WRITE PYTHON CODE

5 Write Python code

15. Write the body of the max even function.

def max_even(lst):
"""Return the largest number in the input that is an even number.

The input must be a list of integers.
If there is no even number in the input, return None.
Examples:
max_even([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 9]) => 6
max_even([3, -1001]) => None

"""

result = None
for i in lst:

i%2 == 0:
if result == None or i > result:
result = i

return result

Another solution:

evens = []
for value in lst:

if value % 2 == 0:
evens.append(value)

if len(evens) == 0:
return None

else:
return max(evens)

Yet another solution:

evens = []
for value in lst:

if value % 2 == 0:
evens.append(value)

max = None
for value in evens:

if max == None or value > max:
max = value

return max

11

Initials: Solutions 5 WRITE PYTHON CODE

16. Write the body of a function that prints each word in a given file, on its own line. For example,
if you were to execute print words("gettysburg.txt") where file gettysburg.txt is as
follows:

Four score and seven
years

ago, our

then the output would be

Four
score
and
seven
years
ago,
our

We have given you the first line of the solution.

def print_words(filename):
"""Print each word of the given file, each on its own line."""
file = open(filename, "r")

for line in file:
for word in line.split():
print word

Another solution:

for word in file.read().split():
print word

12

Initials: Solutions 5 WRITE PYTHON CODE

In the next two problems, suppose that you are given the following data structure.

home_runs = [
("Babe Ruth", 47, 1926),
("David Ortiz", 54, 2006),
("Albert Pujols", 47, 2009),
("Alex Rodriguez", 54, 2007),
("Babe Ruth", 49, 1930),
("Alex Rodriguez", 47, 2003),
("Babe Ruth", 54, 1920),
("Sammy Sosa", 49, 2002)
]

17. Write code that will print this list, sorted alphabetically by first name and (when the name
is the same) by date. In particular, your code should print this data structure (though the
formatting, such as line breaks, might be different):

[(’Albert Pujols’, 47, 2009),
(’Alex Rodriguez’, 47, 2003),
(’Alex Rodriguez’, 54, 2007),
(’Babe Ruth’, 54, 1920),
(’Babe Ruth’, 47, 1926),
(’Babe Ruth’, 49, 1930),
(’David Ortiz’, 54, 2006),
(’Sammy Sosa’, 49, 2002)]

Don’t define a function — just write statements that achieve the goal.
Don’t do anything special for formatting — just use Python’s print statement, applying it
to a list of tuples.

import operator
home runs.sort(key=operator.itemgetter(0, 2))
print home runs

13

Initials: Solutions 5 WRITE PYTHON CODE

18. Write code that will print this list, sorted in decreasing order by number of home runs
and (when the number of home runs is the same) by increasing date. In particular, your
code should print this data structure (though the formatting, such as line breaks, might be
different):

[(’Babe Ruth’, 54, 1920),
(’David Ortiz’, 54, 2006),
(’Alex Rodriguez’, 54, 2007),
(’Babe Ruth’, 49, 1930),
(’Sammy Sosa’, 49, 2002),
(’Babe Ruth’, 47, 1926),
(’Alex Rodriguez’, 47, 2003),
(’Albert Pujols’, 47, 2009)]

Don’t define a function — just write statements that achieve the goal.
Don’t do anything special for formatting — just use Python’s print statement, applying it
to a list of tuples.

import operator
home runs.sort(key=operator.itemgetter(2))
home runs.sort(key=operator.itemgetter(1), reverse=True)
print home runs

14

