Instructions: This exam is closed book, closed notes. You have 50 minutes to complete it. It contains 11 questions and 10 pages (including this one), totaling 90 points. Before you start, please check your copy to make sure it is complete. Turn in all pages, together, when you are finished. Please write neatly; we cannot give credit for what we cannot read.

Good Luck!

Total: 90 points. Time: 50 minutes.

<table>
<thead>
<tr>
<th>Page</th>
<th>Max Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total 90
1) [3 pts] What error would the following code produce? If there is more than one error, give the FIRST one that would be reported.

```python
lst = [0, 15, 22, 11, 4]
x = lst[5]
y = x+x
print "y"
```

2) [3 pts] Write code that would produce a "TypeError: 'list' object not callable" error

3) [3 pts] In theory what distribution corresponds to a histogram where each bin has the same height? (i.e. - the ideal histogram for rolling a die)
4) [12 pts] Write at least two assert statements for each function below that you might use to test that the following functions are correctly implemented. If you think that the functions are incorrectly implemented, include assertions that will expose errors in the function.

```python
def max(lst):
    """ Takes a list of integers and returns the largest value in the list. We consider the maximum value of an empty list to be None. """
    max = 0
    for x in lst:
        if x > max:
            max = x
    return max
```

```python
def avg(lst):
    """ Takes a list of integers and returns a float which is the average of the list. We consider the average value of an empty list to be None. """
    total = 0
    num_values = 0
    for x in lst:
        total += x
        num_values += 1
    return total / num_values
```
5) [12 pts] Implement the following functions:

```python
def normalize(lst):
    ''' Returns a new list in which the elements of lst are all scaled such that the elements of the new list sum to 1. The input is a list of non-negative numbers whose sum is > 0.'''
    assert normalize([]) == []
    assert normalize([1]) == [1.]
    assert normalize([1, 1]) == [0.5, 0.5]
    assert normalize([1, 4]) == [0.2, 0.8]
```

```python
def rolls_to_hist(rolls):
    ''' Convert a list of rolls of a single 6-sided die to a list of counts. rolls is a list of numbers whose values are between 1 and 6 inclusive. In the result list, result[i] is the number of times i appeared in the input list. '''
    assert rolls_to_hist([]) == [0, 0, 0, 0, 0, 0, 0]
    assert rolls_to_hist([1]) == [0, 1, 0, 0, 0, 0, 0]
    assert rolls_to_hist([1, 2, 3, 4, 5, 6]) == [0, 1, 1, 1, 1, 1, 1]
    assert rolls_to_hist([1, 1, 2, 2]) == [0, 2, 2, 0, 0, 0, 0]
```
6) [16 pts] The following functions are in a single file. Implement the function bodies. We are interested not just that the code works, but that you have implemented the functions in good style. Imagine this is code submitted for a homework assignment.

```python
def single_die_roll(k):
    '''Return a single roll of a k-sided die.'''

def dice_roll(numdice, k):
    '''Return the sum of the given number of rolls of a k-sided die.'''

def dice_roll_trials(numdice, k, numtrials):
    '''Returns a list of numtrials numbers, each the sum of rolling numdice k-sided dice.'''
```

b) Write code to print a list of 100 trials, of 3 rolls of a 8-sided die. In other words, print a list of 100 trials, of rolling 3 8-sided die.

MY ANSWER:
7) [6 pts] Write a docstring for the following function. Document the inputs and any outputs or side effects.

```python
import matplotlib.pyplot as plt

def plot_func(func, x_values):
    """
    Your docstring will go here    """
    y_values = []
    
    for x in x_values:
        y_values.append(func(x))

    plt.clf()
    plt.plot(x_values, y_values)
    plt.show()
```

MY ANSWER:
8) [10 pts] You are given the following code:

```python
def a(b):
    f = 0
    g = 0
    c = open(b)
    for d in c:
        e = int(d.strip())
        f = f + e
        g = g + 1
    c.close()
    return float(f) / g
```

a) This function has terrible variable naming. Next to each letter below, write a better name for that variable:

a) ________________________________ (the name of the function)
b) ________________________________
c) ________________________________
d) ________________________________
e) ________________________________
f) ________________________________
g) ________________________________

b) Below, write a good docstring for this function.
9) [9 pts] You are given the following class definition:

class RatNum:
 """Represents a rational number such as 1/2 or 22/7.""

 def __init__(self, numerator, denominator):
 """Construct a RatNum with the given numerator and
denominator.""

 def add(self, other):
 """Return a new RatNum that is the sum of this RatNum and
RatNum other.""

 def to_float(self):
 """Return a float that approximately equals the value of
this RatNum.""

a) Write code that creates a variable r1 bound to a RatNum object representing 4/5 and a
variable r2 bound to a RatNum object representing 6/78

b) Write code that prints the float value of the sum of r1 and r2

c) List one advantage of using a class
10) [6 pts] Write the base case(s) for the following function:

```python
def sum_list(lst):
    ''' Returns the sum of the elements in lst
    Assumes that lst is a list of numbers. '''
    # PUT YOUR CODE HERE:

    return lst[0] + sum_list(lst[1:])
```
11) [10 pts] a) **Draw** the entire environment, including all active environment frames and all user-defined variables, **the first time return 0 is executed**. Feel free to draw out the entire environment, but be sure to CLEARLY indicate what will exist the first time return 0 is executed.

b) What does this function calculate?

MY ANSWER:

```python
def mystery(a, b):
    if b == 0:
        return 0
    elif b < 0:
        return -1 * mystery(a, -b)
    else:
        return a + mystery(a, b - 1)

print(mystery(4, -2))
```