CSE 154: Web Programming Spring 2018

Final Exam Solutions

Name:

UWNet ID: @uw.edu

TA (or section):

Rules:

You have 110 minutes to complete this exam.

You will receive a deduction if you open the test before the start or keep working after the instructor calls
for papers.

This test is open-book and open note.

You may not use any electronic or computing devices, including calculators, cell phones, smartwatches,
and music players.

Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.

Do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...). You may not use
JavaScript frameworks such as jQuery or Prototype when solving problems.

You may use JavaScript function aliases like $ or gs only if you define them in your code.

You may use the fetch syntax used in class in any JavaScript programs you write (you may assume
checkStatus is included).

If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.

You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

] Question \ Score \ Possible
0. HTML/CSS 10
1. JavaScript 20
2. JavaScript/Ajax 20
3. PHP Web Service 20
4. Regex 9
5. SQL 12
6. Short Answer 9
7. Extra Credit
| Total \ | 100

0. CSS is to HTML as Swag is to Snowman

Solution:
<DOCTYPE! html>
<html>
<head>
<link rel="stylesheet" type="text/css" href="index.css">
</head>
<body>
<div id="top" class="circle">
<div class="spot"></div>
<div class="spot"></div>
</div>
<div id="middle" class="circle">
<div class="spot"></div>
<div class="spot"></div>
<div class="spot"></div>
</div>
<div id="bottom" class="circle"></div>
</body>
</html>

.circle {
border: 2px solid black;
border-radius: 50%;
margin-left: auto;
margin-right: auto;

#bottom {
height: 200px;
width: 200px;

3

#middle {
height: 150px;
width: 150px;
display: flex;
flex—-direction: column;
justify-content: space-around;
align-items: center;

#top {
height: 100px;
width: 100px;
display: flex;
justify-content: space-around;
align-items: center;

.spot {
height: 20px;
width: 20px;
border-radius: 50%;
background-color: black;

1. SNOW Day in Seattle!!!

Write a JavaScript program snow. js to add to the existing HTML and CSS (next page). This program animates
a snow scene with falling snow.

Solution:

(function() {
let boxH;

window.onload = function() {

setInterval (newSnowBall, 100);

setInterval(fall, 50);

// gets the height of #snow-scene

boxH = parseInt(window.getComputedStyle(document.getElementById("snow-scene")) .height);
}

function newSnowBall() {
let div = document.createElement("div");
let diameter = randomDiam();
div.classList.add("snowball");
div.style.left = randomNum(800 - diameter - 1) + "px"; // -1 is for right border
div.style.top = 0 + "px";
div.style.height = diameter + "px";
div.style.width = diameter + "px";
document .getElementById("snow-scene") .appendChild(div);

function fall(div, speed, diameter) {
let snowballs = document.querySelectorAll(".snowball");
for(let i = 0; i < snowballs.length; i++){
let snowball snowballs[i];

let diameter = parselnt(snowball.style.height);
let speed = getSpeed(diameter);
let yLoc = parselnt(snowball.style.top);

yLoc += speed;
if (yLoc < boxH) {
snowball.style.top = yLoc + "px";
} else {
snowball.remove() ;
X
b

function getSpeed(diameter) {
if (diameter == 30) {
return 10;
} else if (diameter == 20) {
return 5;
} else {
return 2;

function randomDiam() {

let diams = [10, 20, 30];

return diams[Math.floor (Math.random() * diams.length)];
}

function randomNum(maxValue) {
return Math.random() * maxValue;

}
HO;

2. Fetching Pets Who Fetch with Fetch

Write a JavaScript file pets. js that plays a guessing game with the client, displaying the name and image of
a random pet owned by a CSE 154 staff member, and which keeps track of how many times the client correctly
guesses the TA /instructor who owns the pet.
Solution:
(function() {

let ans;

function $(id) {return document.getElementById(id);}

window.onload = function() {
dropDown() ;
pet;
$("guess-btn") .onclick = guess;

}

function dropDown() {
let url = "pets.php?mode=tas";
fetch(url, {credentials: "include"})
.then(checkStatus)
.then (updateDD) ;

function updateDD(result) {
result = result.split("\n");
for (let i = 0; i < result.length; i++) {
let tag = document.createElement("option");
tag.innerHTML = result[i];
tag.value = resultl[i];
$("ta-list") .appendChild(tag) ;

function pet() {
let url = "pets.php?mode=random";
fetch(url, A{credentials: "include"})
.then(checkStatus)
.then(JSON.parse)
.then(updatePet) ;

function updatePet(resultJSON) {
$("pet-name") .innerHTML = resultJSON.petname;
$("pet-type") .innerHTML = resultJSON.type;
let img = $("pet-img");
img.src = resultJSON.images[Math.floor(Math.random() * resultJSON.images.length)];
if (img.classList.contains("hidden")) {
img.classList.remove("hidden");
}

$("guess-btn") .classList.remove("disabled");

ans = resultJSON.name;

function guess() {
$("guess-btn") .classList.add("disabled");
var dropDown = $("ta-list");
var guess = dropDown.value;
if (guess == ams) {
let correct = $("correct") .innerHTML;
correct = parselnt(correct) + 1;
$("correct") .innerHTML = correct;
}
let total = $("total").innerHTML;
total = parselnt(total) + 1;
$("total") .innerHTML = total;
petO;
}
HO;

3. The Thing That We Fetch From For Fetching Pets Who Fetch

Write a PHP web service called pets.php which provides data about CSE 154 staff and their pets. For this
problem, assume your PHP file is in the same directory as pets.txt and a collection of folders for each
TA /instructor.
Solution:
<7php

$pets = file("pets.txt");

if (isset($_GET["mode"]) && $_GET["mode"] == "tas") {
header ("Content-type: text/plain");
$final_array = arrayQ);
foreach($pets as $line) {
$ta_array = explode(" ", $line, 4);
if ('in_array($ta_array[0], $final_array)) {
array_push($final_array, $ta_array[0]);
print "$ta_array[0]\n";
}
}
} else if(isset($_GET["mode"]) && $_GET["mode"] == "random") {
$pet = $petslarray_rand($pets)];
list($name, $petname, $type, $age) = explode(" ", $pet, 4);
$images = glob("$name/$petname/*.jpg");
foreach($images as $image) {

$image = str_replace("$name/$petname/", "", $image);
}
$output = [

"name" => $name,

"petname" => $petname,

"type" => $type,

"age" => $age,

"images" => $images
1;

header ("Content-type: application/json");
print json_encode($output);
} else {
header ("HTTP/1.1 400 Invalid Request");
header ("Content-type: text/plain");
print "Error: Please pass in a mode parameter of tas or random.";

7>

4. RegEx

It's finals week, and as true Seattlites, we need caffeine to survive it. Write a regular expression to match all
Strings that contain the words “coffee”, “mocha”, or “green tea” containing no digits or special characters
(space characters should be accepted). Both lower-case and upper-case letters are allowed for any letter in the
String.

Solution:
~[a-zA-Z\s]*(coffee|mocha|green tea) [a-zA-Z\s]*$

b. Deoxy-what?

Write a regular expression to match DNA sequences that consist of codons (sequences of three nucleotides [A,
C, T, or G]). The expression should only match sequences that start with the start codon ‘ATG’ and end with
one of the following three stop codons: ‘TAA," ‘TAG,” or 'TGA. Any number of codons with any sequence of
nucleotides may be between a start codon and a stop codon. Sequences that do not have complete codons (i.e.,
those which do not have nucleotide counts that are multiples of three) should not be accepted.

Solution:
“ATG([ACGT]{3})*((TAA) | (TAG) | (TGA))$

c. SELECT-em ALL!
Write a regular expression that accepts simple SQL select statements. That is, any SQL statement that:

» starts with “"SELECT" followed by one or more comma-separated column names followed by
= by a single “FROM" statement followed by

= one or more comma-separated table names and

= s finished optionally with an semi-colon (;)

A valid column or table name contains only letter characters (no spaces, numerical, or special characters), except
that a column name may optionally include a single " within the name string (not at the start or end). SELECT
and FROM must be both all-lowercase or both all-uppercase.

Solution:
“(select ([a-zA-Z]*\.?[a-zA-Z]*)(, [a-zA-Z]1*\.7[a-zA-Z]*)* from [a-zA-Z]*;?)|
(SELECT ([a-zA-Z]*\.7[a-zA-Z]*)(, [a-zA-Z]*\.?[a-zA-Z]*)* FROM [a-zA-Z]*;7)$

10

Consider the following tables in a database called “Cafe”:

Menu
mid item price | cost | category | subcategory

1 Brewed Coffee (Black) 1.25 | 0.65 Drink Coffee
2 Espresso 3.75 | 1.15 Drink Coffee
3 Jeremy's Unicorn Frappe 8.00 | 2.75 Drink Coffee
4 Bubble Tea 3.00 | 1.75 Drink Tea

5 Blueberry Muffin 3.00 | 1.20 Bakery Muffin
6 Honey Toast 4.00 | 1.85 Bakery Bread
7 Chocolate Chip Cookie 1.25 | 0.50 Bakery Cookie
8 | Chocolate Chip Cookie (Gluten-Free) | 1.25 | 0.60 | Bakery Cookie

Customers

cid | firstname | lastname
153 Sam Kaufman

154 Kyle Thayer
155 Jeremy Zhang
156 Kelley Chen

157 Melissa Medsker

Orders
oid | mid | cid date time | gty
1000 | 2 | 157 | 2017-11-29 | 03:00 | 154
1001 | 3 | 155 | 2017-12-02 | 13:00 | 1
1002 | 3 | 155 | 2017-12-08 | 13:30 | 50
1003 | 4 | 156 | 2017-12-09 | 09:30 | 4
1004 | 1 153 | 2017-12-10 | 01:00 | 12

The Menu table has a primary key of mid, the Customers table has a primary key of cid, and the Orders table
has a primary key of oid. The mid and cid attributes in Orders correspond to the primary keys in Menu and
Customers, respectively.

The questions are on the next page.

11

(a)

Write a SQL query which returns the item name, date, time, and the last name of the customer for all
Coffee Drink orders (Drink orders with subcategory ‘Coffee’) which were made in the year 2017. Results
should be ordered by the most recent order first.

Hint: You can treat the date attribute as a normal SQL string to determine whether it is a date in
2017. date and time are comparable as expected. That is, the date 2017-12-08 (December 8, 2017) is
considered ‘greater than’, or ‘more recent’ than 2017-05-02 (May 2nd, 2017) and the time 13:00 (13:00
or 1:00 PM) is considered ‘more recent’ in a given day than 01:00 (01:00 or 1:00 AM).

SELECT i.item, o,date, o.time, c.lastname
FROM Orders i

JOIN Customers c ON i.cid = c.id

JOIN Menu m ON i.mid = m.id

WHERE i.date >= '2017-01-01'

AND i.date <'2018-01.01' // optional
AND m.category = 'Drink' // optional
AND m.subcategory = 'Coffee'

ORDER By i.date DESC, i.time DESC;

Write a SQL query which returns the first and last name of the customer, time of order, menu item, and
category for all customers who have both an order for a Drink and an order for a Bakery item in the
database (they may have more than one order for both categories, but you should include all of the orders
for customers who meet this requirement). There should be no duplicate rows with the same customer,
order time, menu item, and category.

SELECT DISTINCT c.firstname, c.lastname, ol.time, ml.item, ml.category

FROM Orders ol, Customers c, Menu ml, Orders o2, Menu m2

WHERE o01.mid = ml.mid

AND 02.mid = m2.mid

AND c.cid = ol.cid

AND c.cid = o02.cid

AND ((ml.category = "Drink" AND m2.category = "Bakery") OR
(ml.category = "Bakery" AND m2.category = "Drink"))

12

6. Short Answers

1. What is the difference between a relative link and an absolute link?

Solution:

A relative link is relative to the path of the file that references the link. An absolute link is the full url,
including the http/https at the beginning.

2. Why is it important to use the module pattern in JavaScript?

Solution:

To prevent pollution of the global namespace; to prevent conflict between duplicate variables/functions
between different scripts.

3. Provide one real-world example where a cookie would be more appropriate to use than a session

Solution:

Client-side navigation preferences for an e-commerce shopping site.

4. Provide one real-world example where a session would be more appropriate to use than a cookie

Solution:

Server-side login validation on a banking site.

5. What is one advantage of using a SQL database over text files to store data?

Solution:

SQL databases are easier to query, join, manipulate, and are easier to scale than text-files. It is also much
easier to allow multiple users to query/update the same database at once.

6. What are two ways of making a website more accessible for users with different abilities?

Solution:

Using colors that are easily distinguishable for users who are color-blind. Avoiding the use of directional
text. Using attributes like descriptive alt text which can be easily identified by screenreaders.

7. What is the difference between a GET and POST request in PHP?

Solution:

A GET request is used primarily to retrieve data from the server, and may include parameters in the
request URL. A POST request is primarily used to send data to the server (data may still be returned in
the response) and any parameters sent are encrypted (e.g. using FormData).

8. Why is it important to specify the content type header in PHP when outputting something?

13

Solution:
By default, PHP outputs content as HTML. Content type needs to be set explicitly whenever it is expected
in a different format (e.g. plain text, JSON, etc.)

9. Explain one way someone could do something bad by exploiting a vulnerability in your site if it wasn't
written securely.

Solution:

Injecting a JS script onto the page when the page is loaded, or when code to do so is entered in a form
input. Submitting a form with SQL modification queries (e.g. DROP TABLE) when there is no client-side
verification/escaping.

7. Extra Credit (1 extra credit point)

If your TA were an HTML tag, which one would they be, and why? You may also give us an artistic rendering
of your TA as an HTML tag, if you prefer. (Drawing, poetry, etc). Any work that appears to have taken more
than 1 minute of effort and is not offensive/inappropriate will receive the extra credit point.

14

