CSE 154

EEEEEEEEEEEEE

Pros and cons of XML

* pro:
» standard open format; don't have to "reinvent the wheel" for storing new types
of data
e can represent almost any general kind of data (record, list, tree)
e easy to read (for humans and computers)
* |ots of tools exist for working with XML in many languages
e con:
* bulky syntax/structure makes files large; can decrease performance (example)
e can be hard to "shoehorn" data into a good XML format
» JavaScript code to navigate the XML DOM is bulky and generally not fun

http://en.wikipedia.org/wiki/MathML#Example_and_comparison_to_other_formats

An example of XML data

<?xml version="1.0" encoding="UTF-8"?>
<note private="true">
<from>Alice Smith (alice@example.com)</from>
<to>Robert Jones (robertolexample.com)</to>
<to>Charles Dodd (cdodd@example.com)</to>
<subject>Tomorrow's "Birthday Bash" event!</subject>
<message language="english">
Hey guys, don't forget to call me this weekend!
</message>
</note> XML

e fairly simple to read and understand
e can be parsed by JavaScript code using XML DOM

* Isthere any other data format that is more natural for JS code to process?

JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON): Data format that
represents data as a set of JavaScript objects

JSON

Data Interchange Format

* invented by JS guru Douglas Crockford of Yahoo!

e natively supported by all modern browsers (and
libraries to support it in old ones)

* not yet as popular as XML, but steadily rising due to its
simplicity and ease of use

http://www.crockford.com/

Background: Creating a new object

var name = {
fieldName: value,
fieldName: value
}s JS
var pt = {
x: 4,
v: 3
b
pt.z = -1;
alert ("(" + pt.x + ", " + pt.y + ", " +pt.z + ")"); // (4, 3, -1)

* inJavaScript, you can create a new object without creating a class
e you can add properties to any object even after it is created (z)

More about JavaScript object syntax

var person = {
name: "Philip J. Fry", // string
age: 23, // number
"weight": 172.5, // number
friends: ["Farnsworth", "Hermes", "Zoidberg"], // array
getBeloved: function () { return this.name + " loves Leela"; }

i

alert (person.age) ; // 23

alert (person["weight"]) ; // 172.5

alert (person.friends[2])):; // Zoidberg

alert (person.getBeloved()) ; // Philip J. Fry loves Leela

e an object can have methods (function properties) that refer to itself as this
 can refer to the fields with .fieldName or ["fieldName"] syntax
* field names can optionally be put in quotes (e.g. weight above)

Repeated: Example XML data

<?xml version="1.0" encoding="UTF-8"?>
<note private="true">
<from>Alice Smith (alice@example.com)</from>
<to>Robert Jones (robertolexample.com)</to>
<to>Charles Dodd (cdodd@example.com)</to>
<subject>Tomorrow's "Birthday Bash" event!</subject>
<message language="english">
Hey guys, don't forget to call me this weekend!
</message>
</note> XML

e Could we express this message data as a JavaScript object?

* Each attribute and tag could become a property or sub-object within the overall
message object

The equivalant JSON data

{

"private": "true",
"from": "Alice Smith (alice(@example.com)",
"tO": [

"Robert Jones (robertolexample.com)",
"Charles Dodd (cdodd@example.com)"

1,

"subject": "Tomorrow's \"Birthday Bash\" event!",
"message": {
"language": "english",
"text": "Hey guys, don't forget to call me this weekend!"
}
} JSON

Valid JSON

=—{ // no variable assignment
"first name": ‘Bartt, // strings must be double-quoted
tast—namesr "Simpson", // property names must be quoted
"birthdate": new Date ("April 1, 1983"), // Date objects not supported
"enroll": furetieonit—+ // Functions not supported
this-enrolted——Frues
Y
I8 JSON
[J

JSON has a few rules that differ from regular JS:

e Strings must be quoted (in JS, single- or double-quoted are allowed)

* All property/field names must be quoted

* Unsupported types: Function, Date, RegExp, Error

* All others supported: Number, String, Boolean, Array, Object, null
 Numerous validators/formatters available: JSONLint, JSON Formatter &

Validator, Free Formatter, JSON Validator

http://jsonlint.com/
http://jsonformatter.curiousconcept.com/
http://www.freeformatter.com/json-validator.html
http://paulisageek.com/json_validator/

Browser JSON methods

method description

JSON.parse(string) converts the given string of JSON data into an equivalent
JavaScript object and returns it

JSON.stringify(object) |converts the given object into a string of JSON data (the
opposite of JSON.parse)

* you can use Ajax to fetch data that is in JSON format
* then call ISON. parse on it to convert it into an object
* then interact with that object as you would with any other JavaScript object

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/JSON/stringify

JSON expressions exercise

Given the JSON data at right, what var data = JSON.parse (this.responseText);
expressions would produce: {
e The window's title? (use the "window": f{
"title": "Sample Widget",
Console)
"width": 500,
* Theimage's third coordinate? "height™: 500
* The number of messages? by
) 9 "image": {
* The y-offset of the last message- "sret: "images/logo.png",
"coords": [250, 150, 350, 400],
var title = data.window.title; “allgpments “eentert
var coord = data.lmage.coords[2]; '}'r,nessages"' [
var len = data.messages.length; {("text": "Save", "offset": [10, 20]},
var y = data.messages[len - 1].offset[1l]; {"text": "Help", "offset": [0, 501},
{"text": "Quit", "offset": [30, 15]}

1,

ﬂi
}

JSON example: Books

Suppose we have a service books json.php about library books.
* If no query parameters are passed, it outputs a list of book categories:

{ "categories": ["computers", "cooking", "finance", ...] } JSON

* Supply a category query parameter to see all books in one category:
http://webster.cs.washington.edu/books json.php?category=cooking

{
"books": |
{"category": "cooking", "year": 2009, "price": 22.00,
"title": "Breakfast for Dinner", "author": "Amanda Camp"},
{"category": "cooking", "year": 2010, "price": 75.00,
"title": "21 Burgers for the 21st Century", "author": "Stuart Reges"},
]
} JSON

http://webster.cs.washington.edu/books_json.php
http://webster.cs.washington.edu/books_json.php?category=cooking

JSON exercise

Write a page that processes this JSON book data.
* Initially the page lets the user choose a category, created from the JSON data.
= © Children © Computers © Finance [Listgooks |

e After choosing a category, the list of books in it appears:

Books in category "Cooking":

= Breakfast for Dinner, by Amanda Camp (2009)

= 21 Burgers for the 21st Century, by Stuart Reges (2010)

= The Four Food Groups of Chocolate, by Victoria Kirst (2005)

Working with JSON book data

function showBooks () {
// add all books from the JSON data to the page's bulleted list
var data = JSON.parse(this.responseText) ;
for (var 1 = 0; 1 < data.books.length; i++) {
var 11 = document.createElement ("11i");
li.innerHTML = data.books[i].title + ", by " +
data.books[i] .author + " (" + data.books[i].year + ")";
document.getElementById ("books") .appendChild (11i) ;

JS

Bad style: the eval function

// var data = JSON.parse (this.responseText);
var data = eval (this.responseText) ; // don't do this!
JS

e JavaScriptincludes an eval keyword that takes a string and runs it as code
* thisis essentially the same as what JSON. parse does,

* but JSON. parse filters out potentially dangerous code; eval doesn't

e eval is evil and should not be used!

