CSE 154

LLLLLLLLLLLL

Storing structured data in arbitrary text
formats (bad)

My note:
BEGIN
FROM: Alice Smith (alicelexample.com)
TO: Robert Jones (robertolexample.com)
SUBJECT: Tomorrow's "Birthday Bash" event!
MESSAGE (english):
Hey Bob,
Don't forget to call me this weekend!

PRIVATE: true
END XML

 Many apps make up their own custom text format for storing structured data.
 We could also send a file like this from the server to browser with Ajax.
 What's wrong with this approach?

XML: A better way of storing data

<?xml version="1.0" encoding="UTF-8"?>
<note private="true">
<from>Alice Smith (alice@example.com)</from>
<to>Robert Jones (robertolexample.com)</to>
<subject>Tomorrow's "Birthday Bash" event!</subject>
<message language="english">
Hey Bob, Don't forget to call me this weekend!
</message>
</note> XML

« eXtensible Markup Language (XML) is a format for storing nested data with tags
and attributes

* essentially, it's HTML, but you can make up any tags and attributes you want

* |ots of existing data on the web is stored in XML format

http://www.usgovxml.com/

What is XML?

« XML is a "skeleton" for creating markup languages
* you decide on an XML "language" of tags and attributes that you want to allow in
your app
XML syntax is mostly identical to
HTML's: <element attribute="value" >content</element>
e the HTML/XML tag syntax is a nice general syntax for describing hierarchical
(nested) data
 when you choose to store data in XML format (or access external XML data), you
must decide:
 names of tags in HTML: hl, div, img, etc.
* names of attributes in HTML: id/class, src, href, etc.
* rules about how they go together in HTNVIL: inline vs. block-level elements
XML presents complex data in a human-readable, "self-describing" form

Anatomy of an XML file

<?xml version="1.0" encoding="UTF-8"?> <!-- XML prolog -->
<note private="true"> <!-- root element -->
<from>Alice Smith (alice@example.com)</from>
<to>Robert Jones (robertolexample.com)</to>
<subject>Tomorrow's "Birthday Bash" event!</subject>
<message language="english">
Hey Bob, Don't forget to call me this weekend!
</message>
</note> XML

 beginswithan<?xml ... ?>headertag (prolog)
* has asingle root element (in this case, note)
e tag, attribute, and comment syntax is just like HTML

Uses of XML

XML data comes from many sources on the web:

* web servers store data as XML files
* databases sometimes return query results as XML

e web services use XML to communicate

XML is the de facto universal format for exchange of data

XML languages are used for music, math, vector graphics

e popular use: RSS for news feeds & podcasts

http://en.wikipedia.org/wiki/MusicXML
http://en.wikipedia.org/wiki/MathML
http://en.wikipedia.org/wiki/SVG
http://en.wikipedia.org/wiki/RSS

What tags are legal in XML?

* any tags you want! examples:

e alibrary might use
tags book, title, author

* asong might use tags key, pitch, note

 when designing XML data, you choose how to
best represent the data

* large or complex pieces of data become tags

* smaller details and metadata with simple
types (integer, string, boolean) become
attributes

<measure number="1">
<attributes>
<divisions>1</divisions>
<key><fifths>0</fifths></key>
<time><beats>4</beats></time>
<clef>
<sign>G</sign><line>2</line>
</clef>
</attributes>
<note>
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<type>whole</type>
</note>

</measure> XML

XML and Ajax

* web browsers can display XML files, but often you instead want to fetch
one and analyze its data
* the XML data is fetched, processed, and displayed using Ajax
e (XMListhe "X" in "Ajax")
* It would be very clunky to examine a complex XML structure as just a giant
string!
* luckily, the browser can break apart (parse) XML data into a set of objects
* thereis an XML DOM, similar to the HTML DOM

Fetching XML using Ajax (template)

var ajax = new XMLHttpRequest () ;
ajax.onload = functionName;
ajax.open ("GET", url, true);
ajax.send() ;

ajax.responseXML

function functionName () { ﬁm%ﬁ <categories>
do something with this.responseXML; S
} nextSibling XML
<category> | fisichild
nextSibling L "children"

« this.responseText contains the data in plain text (a string) " \n
 this.responseXML is a parsed XML DOM tree object nextSibling

* it has methods very similar to HTML DOM objects <‘ate?°’y>|_ frstChilc

: "computers"

XML DOM tree structure

<?xml version="1.0" encoding="UTF-8"?>

<categories>
<category>children</category>
<category>computers</category>

ajax.responseXML

<categories>

firstChild
c . firstChild
</categories> — XML
next L.
<category> | firschild
* the XML tags have a tree structure rexsomal I chitdren”
* DOM nodes have parents, children, and siblings o\
e each DOM node object has properties/methods nextSIbling
for accessing nearby nodes <category> | i

L]
: L "computers"

Interacting with XML DOM nodes

To get an array of nodes:

var elms = node.getElementsByTagName ("tag") ;
var elms = node.querySelectorAll ("selector"); // all elements
var elm = node.querySelector ("selector"); // first element XML

ajax.responseXML

To get the text inside of a node:

I— <categories>

var text = node.textContent; // or, e

var text = node.firstChild.nodeValue; - XML
| <category> | firstChild

To get the value of a given attribute on a node: nextSibling L “children"

n \n n

var attrValue = node.getAttribute ("name") ; XML

nextSibling

<category> | fsichild

L]
: I—l "computers" I

Differences from HTML DOM

Don't usually use getElementById because XML nodes don't have IDs or classes.

var div = = a JS
Can't get/set the text inside of a node using innerHTML:

var text = div—innerHTME+ JS
Can't get an attribute's value using . attributeName:

var 1mageUrl = N) 3 JS

Ajax XML DOM example

<?xml version="1.0" encoding="UTF-8"7?>

<employees>
<lawyer money="99999.00" />
<janitor name="Ed"> <vacuum model="Hoover" /> </janitor>
<janitor name="Bill">no vacuum, too poor</janitor>

</employees> XML
// how much money does the lawyer make?

var lawyer = this.responseXML.querySelector ("lawyer");

var salary = parseFloat (lawyer.getAttribute ("money")) ; // 99999.0

// array of 2 janitors

var janitors = this.responseXML.querySelectorAll ("janitor");

var vacModel = janitors[0].querySelector ("vacuum") .getAttribute ("model") ;
var excuse = janitors[l].textContent; // "no vacuum, too poor"

 How would we find out the first janitor's name? (use the Console)
 How would we find out how many janitors there are?

e How would we find out how many '!anitors have vs. don't have vacuums?

<?xml version="1.0" encoding="UTF-8"7?>
<bookstore>

a rge r X I\/l <book category="cooking">

<title lang="en">Everyday Italian</title>
akl

<author>Giada De Laurentiis</author>
e exa m p e <year>2005</year><price>30.00</price>
</book>
<book category="computers">
<title lang="en">XQuery Kick Start</title>
<author>James McGovern</author>
<year>2003</year><price>49.99</price>
</book>
<book category="children">
<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year><price>29.99</price>
</book>
<book category="computers">
<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year><price>39.95</price>

</book>

<!-- you can play with this XML in the console
as 'this.responseXML2' -->
</bookstore>

Navigating node tree example

// make a paragraph for each book about computers
var books = this.responseXML.getElementsByTagName ("book") ;
for (var 1 = 0; 1 < books.length; i++) {

var category = books[1].getAttribute ("category");

1f (category == "computers") {
// extract data from XML
var title = books[1i].querySelector ("title") .textContent;
var author = books[i].querySelector ("author") .textContent;

// make an HTML <p> tag containing data from XML
var p = document.createElement ("p")

p.innerHTML = title + ", by " + author;
document.body.appendChild (p) ;

Exercise: Late day distribution

* Write a program that shows how many students turn homework in late for each
assignment.

* Data service
here: http://webster.cs.washington.edu/csel54/hw/hw.php

* parameter: assignment=hwN

http://webster.cs.washington.edu/cse154/hw/hw.php?assignment=hw1

Exercise: Animal game

* Write a program that guesses which animal the user is thinking of. The program will
arrive at a guess based on the user's responses to yes or no questions. The questions
come from a web app named animalgame.php.

The Animal Game

Think of an animal, then let me guess it!

—Question —Answer

Can it fly? Yes

No |

http://webster.cs.washington.edu/cse154/animalgame.php?nodeid=1

Practice problem: Animal game (cont'd)

The data comes in the following format:

<node nodeid="id">
<question>question text</question>
<yes nodeid="id" />
<no nodeid="id" />
</node> XML

<node nodeid="id">
<answer>answer text</answer>
</node> XML,

* to get a node with a given id: animalgame.php?nodeid=id
e start by requesting the node with nodeid of 1 to get the first question

Attacking the problem

* Questions we should ask ourselves:

 How do | retrieve data from the web app? (what URL, etc.)
* Once | retrieve a piece of data, what should | do with it?

* When the user clicks "Yes", what should | do?

* When the user clicks "No", what should | do?

 How do | know when the game is over? What should | do in this case?

Debugging responseXML in Firebug

B =« aa
|| watch | Breakpoints Options +
this Window names.him! ;I
= ajax KXMLHttpRequest readyState=4
channel [xpconnect wrapped nslChannel]
multipart fzlse
onerror m
readyState 4
responseText "<?xm]l version="1.0" encoding="UTF-8"?>\n<bsby name="Martin">\n <rank
year="1300"*g6</rank>\n <ran..."
= responseXML Document
nodeType g
= firstChild baby i
nodeType 1
tagMame "hahy"
niodeMame "haby"
parenttode Document
nextsibling m
previoussibling
firstChild "o "
lastChild "ot
= childModes [" v, rank, "\n v 20 more.. 1
(= " "

e cah examine the entire XML document, its node/tree structure

Full list of XML DOM properties

* properties:
 nodeName, nodeType, nodeValue, attributes
e firstChild, lastChild, childNodes, nextSibling, previousSibling,
parentNode
* methods:
« getElementById, getElementsByTagName, querySelector, querySelec
torAll, getAttribute, hasAttribute,hasChildNodes
 appendChild, insertBefore, removeChild, replaceChild
e full reference

http://www.w3schools.com/dom/dom_methods.asp

Schemas and Doctypes

* "rule books" describing which tags/attributes you want to allow in your data
e used to validate XML files to make sure they follow the rules of that "flavor"

e the W3C HTML validator uses an HTML schema to validate your HTML (related
to <!DOCTYPE html> tag)

* these are optional; if you don't have one, there are no rules beyond having well-
formed XML syntax

* for more info:

e W3C XML Schema

* Document Type Definition (DTD) ("doctype")

http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/Document_Type_Definition

