
CSE 154
LECTURE 22: AJAX

Synchronous web communication

• synchronous: user must wait while new pages load
• the typical communication pattern used in web pages (click, wait, refresh)

Web applications and Ajax
• web application: a dynamic web site that mimics the feel of a desktop app

• presents a continuous user experience rather than disjoint pages

• examples: Gmail, Google Maps, Google Docs and Spreadsheets, Flickr, A9

• Ajax: Asynchronous JavaScript and XML

• not a programming language; a particular way of using JavaScript

• downloads data from a server in the background

• allows dynamically updating a page without making the user wait

• avoids the "click-wait-refresh" pattern

• examples: UW's CSE 14x Diff Tool, Practice-It; Google Suggest

http://en.wikipedia.org/wiki/Web_application
http://mail.google.com/
http://maps.google.com/
http://docs.google.com/
http://www.flickr.com/
http://www.a9.com/
http://www.cs.washington.edu/education/courses/cse143/09wi/diff.html
http://webster.cs.washington.edu:8080/practiceit/
http://suggest.google.com/

Asynchronous web communication

• asynchronous: user can keep interacting with page while data loads

The XMLHttpRequest object

• JavaScript includes an XMLHttpRequest object that can fetch files from a web
server

• supported in IE7+, Safari, Firefox, Opera, Chrome, etc. (all major browsers)

• IE5/6 don't have it, but we will ignore this

• (technically, MS/IE invented XMLHttpRequest and Ajax for use in an online
version of MS Outlook (credit where it's due!)

• it can do this asynchronously (in the background, transparent to user)

• the contents of the fetched file can be put into current web page using the DOM

A typical Ajax request
1. user clicks, invoking an event handler

2. handler's code creates an XMLHttpRequest object

3. XMLHttpRequest object requests page from server

4. server retrieves appropriate data, sends it back

5. XMLHttpRequest fires an event when data arrives
• this is often called a callback
• you can attach a handler function to this event

6. your callback event handler processes the data and displays it

Levels of using XMLHttpRequest

1. synchronized, text/HTML-only (SJAT?)

2. asynchronous, text/HTML-only (AJAT?)

3. asynchronous w/ XML data (Ajax ... seen next lecture)

XMLHttpRequest methods
the core JavaScript object that makes Ajax possible

Method Description

open(method, url, async) specifies the URL and HTTP request method

send()
send(postData)

sends the HTTP request to the server, with
optional POST parameters

abort() stops the request

getAllResponseHeaders(),
getResponseHeader(name),
setRequestHeader(name,value)

for getting/setting raw HTTP headers

XMLHttpRequest properties
Property Description

responseText the entire text of the fetched page, as a string

responseXML the entire contents of the fetched page, as an XML document tree
(seen later)

status the request's HTTP status code (200 = OK, etc.)

statusText HTTP status code text (e.g. "Bad Request" for 400)

timeout how many MS to wait before giving up and aborting the request
(default 0 = wait forever)

readyState request's current state (0 = not initialized, 1 = set up, 2 = sent, 3 = in
progress, 4 = complete)

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

1. Synchronized requests (bad)
// this code is in some control's event handler

var ajax = new XMLHttpRequest();

ajax.open("GET", url, false);

ajax.send();

do something with ajax.responseText; JS

• create the request object, open a connection, send the request

• when send returns, the fetched text will be stored in
request's responseText property

Why synchronized requests suck
• your code waits for the request to completely finish

before proceeding
• easier for you to program, but ...

• the user's entire browser LOCKS UP until the
download is completed

• a terrible user experience (especially if the page is
very large or slow to transfer)

• better solution: use an asynchronous request that notifies you when it is complete
• this is accomplished by learning about the event properties of XMLHttpRequest

XMLHttpRequest events
Event Description

load occurs when the request is completed

error occurs when the request fails

timeout occurs when the request times out

abort occurs when the request is aborted by calling abort()

loadstart, loadend,
progress, readystatechange

progress events to track a request in progress

2. Asynchronous requests, basic idea
var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.open("GET", url, true);

ajax.send();

...

function functionName() {

do something with this.responseText;

} JS

• attach an event handler to the load event
• handler will be called when request state changes, e.g. finishes
• function contains code to run when request is complete

• inside your handler function, this will refer to the ajax object
• you can access its responseText and other properties

What if the request fails?
var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.open("GET", "url", true);

ajax.send();

...

function functionName() {

if (this.status == 200) { // 200 means request succeeded

do something with this.responseText;

} else {

code to handle the error;

}

} JS

• web servers return status codes for requests (200 means Success)
• you may wish to display a message or take action on a failed request

http://en.wikipedia.org/wiki/Http_error_codes

Handling the error event
var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.onerror = errorFunctionName;

ajax.open("GET", "url", true);

ajax.send();

...

function functionName(e) {

do something with e, this.status, this.statusText, ...

} JS

• the graceful way to handle errors is to listen for the error event
• the handler is passed the error/exception as a parameter
• you can examine the error, as well as the request status, to determine what went

wrong

Example Ajax error handler
var ajax = new XMLHttpRequest();

...

ajax.onerror = ajaxFailure;

...

function ajaxFailure(exception) {

alert("Error making Ajax request:" +

"\n\nServer status:\n" + this.status + " " + this.statusText +

"\n\nServer response text:\n" + this.responseText);

if (exception) {

throw exception;

}

} JS

• for user's (and developer's) benefit, show an error message if a request fails

Debugging Ajax code

• Firebug Net tab (or Chrome's Network tab) shows each request, parameters,
response, errors

• expand a request with + and look at Response tab to see Ajax result
• check Console tab for any errors that are thrown by requests

Passing query parameters to a request
var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.open("GET", "url?name1=value1&name2=value2&...", true);

ajax.send(); JS

• to pass parameters, concatenate them to the URL yourself
• you may need to URL-encode the parameters by calling the

JS encodeURIComponent(string) function on them
• won't work for POST requests (see next slide)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

Creating a POST request
var params = new FormData();

params.append("name", value);

params.append("name", value);

var ajax = new XMLHttpRequest();

ajax.onload = functionName;

ajax.open("POST", "url", true);

ajax.send(params); JS

• use a FormData object to gather your POST query parameters
• pass the FormData to the request's send method
• method passed to open should be changed to "POST"

http://www.w3.org/TR/XMLHttpRequest/#formdata

XMLHttpRequest security restrictions

• Ajax must be run on a web page stored on a web server
• (cannot be run from a web page stored on your hard drive)

• Ajax can only fetch files from the same server that the page is on
• http://www.foo.com/a/b/c.html can only fetch from http://www.foo.com

