
CSE 154
LECTURE 21: MORE EVENTS

JavaScript events

abort blur change click dblclick error focus

keydown keypress keyup load mousedown mousemove mouseout

mouseover mouseup reset resize select submit unload

• the click event (onclick) is just one of many events that can be handled

The keyword this
this.fieldName // access field

this.fieldName = value; // modify field

this.methodName(parameters); // call method JS

• all JavaScript code actually runs inside of an object

• by default, code runs in the global window object (so this === window)

• all global variables and functions you declare become part of window

• the this keyword refers to the current object

Event handler binding
window.onload = function() {

document.getElementById("textbox").onmouseout = booyah;

document.getElementById("submit").onclick = booyah;

// bound to submit button here

};

function booyah() { // booyah knows what object it was called on

this.value = "booyah";

} JS

• event handlers attached unobtrusively are bound to the element
• inside the handler, that element becomes this

output

Fixing redundant code with this
<input id="huey" type="radio" name="ducks" value="Huey" /> Huey

<input id="dewey" type="radio" name="ducks" value="Dewey" /> Dewey

<input id="louie" type="radio" name="ducks" value="Louie" /> Louie HTML

function processDucks() {

if (document.getElementById("huey").checked) {

alert("Huey is checked!");

} else if (document.getElementById("dewey").checked) {

alert("Dewey is checked!");

} else {

alert("Louie is checked!");

}

alert(this.value + " is checked!");

} JS

output

• if the same function is assigned to multiple elements, each gets its own bound copy

The event object
function name(event) {

// an event handler function ...

} JS

• Event handlers can accept an optional parameter to represent the event that is occurring.
Event objects have the following properties / methods:

property name description

type what kind of event, such as "click" or "mousedown"

target the element on which the event occurred

timeStamp when the event occurred

Mouse events
click user presses/releases mouse button on the element

dblclick user presses/releases mouse button twice on the element

mousedown user presses down mouse button on the element

mouseup user releases mouse button on the element

clicking

mouseover mouse cursor enters the element's box

mouseout mouse cursor exits the element's box

mousemove mouse cursor moves around within the element's box

movement

http://wap.w3schools.com/jsref/jsref_onclick.asp
http://wap.w3schools.com/jsref/jsref_ondblclick.asp
http://wap.w3schools.com/jsref/jsref_onmousedown.asp
http://wap.w3schools.com/jsref/jsref_onmouseup.asp
http://wap.w3schools.com/jsref/jsref_onmouseover.asp
http://wap.w3schools.com/jsref/jsref_onmouseout.asp
http://wap.w3schools.com/jsref/jsref_onmousemove.asp

Mouse event objects
The event passed to a mouse handler has these properties:

property/method description

clientX
clientY

coordinates in browser window

screenX
screenY

coordinates in screen

offsetX
offsetY

coordinates in element (non-standard)

button integer representing which button was
pressed (0=Left, 1=Middle, 2=Right)

Mouse event example
<pre id="target">Move the mouse over me!</pre> HTML

window.onload = function() {

var target = document.getElementById("target");

target.onmousemove = target.onmousedown = showCoords;

};

function showCoords(event) {

document.getElementById("target").innerHTML =

+ "screen : (" + event.screenX + ", " + event.screenY + ")\n"

+ "client : (" + event.clientX + ", " + event.clientY + ")\n"

+ "button : " + event.button;

} JS

screen : (333, 782)

client : (222, 460)

button : 0 output

Keyboard/text events
name description

focus this element gains keyboard focus (attention of user's keyboard)

blur this element loses keyboard focus

keydown user presses a key while this element has keyboard focus

keyup user releases a key while this element has keyboard focus

keypress user presses and releases a key while this element has keyboard focus

select this element's text is selected or deselected

http://wap.w3schools.com/jsref/jsref_onfocus.asp
http://wap.w3schools.com/jsref/jsref_onblur.asp
http://wap.w3schools.com/jsref/jsref_onkeydown.asp
http://wap.w3schools.com/jsref/jsref_onkeyup.asp
http://wap.w3schools.com/jsref/jsref_onkeypress.asp
http://wap.w3schools.com/jsref/jsref_onselect.asp

Key event objects

property name description

keyCode ASCII integer value of key that was pressed
(convert to char with String.fromCharCode)

altKey, ctrlKey, shiftKey true if Alt/Ctrl/Shift key is being held

• issue: if the event you attach your listener to doesn't have the focus, you won't hear
the event
• possible solution: attach key listener to entire page body, document, an outer

element, etc.

http://www.quirksmode.org/js/keys.html

Key event example
document.getElementById("textbox").onkeydown = textKeyDown;

...

function textKeyDown(event) {

var key = String.fromCharCode(event.keyCode);

if (key == 's' && event.altKey) {

alert("Save the document!");

this.value = this.value.split("").join("-");

}

} JS

• each time you push down any key, even a modifier such as Alt or Ctrl, the keydown event
fires

• if you hold down the key, the keydown event fires repeatedly
• keypress event is a bit flakier and inconsistent across browsers

Some useful key codes

keyboard key event keyCode

Backspace 8

Tab 9

Enter 13

Escape 27

Page Up, Page Down, End, Home 33, 34, 35, 36

Left, Up, Right, Down 37, 38, 39, 40

Insert, Delete 45, 46

Windows/Command 91

F1 - F12 112 - 123

Page/window events

name description

contextmenu the user right-clicks to pop up a context menu

error an error occurs when loading a document or an image

load, unload the browser loads the page

resize the browser window is resized

scroll the user scrolls the viewable part of the page up/down/left/right

unload the browser exits/leaves the page

• The above can be handled on the window object

http://wap.w3schools.com/jsref/dom_obj_event.asp
http://wap.w3schools.com/jsref/jsref_onerror.asp
http://wap.w3schools.com/jsref/jsref_onload.asp
http://wap.w3schools.com/jsref/jsref_onunload.asp
http://wap.w3schools.com/jsref/jsref_onresize.asp
http://wap.w3schools.com/jsref/dom_obj_event.asp
http://wap.w3schools.com/jsref/jsref_onunload.asp

Form events

event name description

submit form is being submitted

reset form is being reset

change the text or state of a form control has
changed

http://wap.w3schools.com/jsref/jsref_onsubmit.asp
http://wap.w3schools.com/jsref/jsref_onreset.asp
http://wap.w3schools.com/jsref/jsref_onchange.asp

Stopping an event
event method name description

preventDefault stops the browser from doing its normal action on an event; for
example, stops the browser from following a link when <a> tag is clicked,
or stops browser from submitting a form when submit button is clicked

stopPropagation stops the browser from showing this event to any other objects that may
be listening for it

• you can also return false; from your event handler to stop an event

Stopping an event, example
<form id="exampleform" action="http://foo.com/foo.php">...</form>

window.onload = function() {

var form = document.getElementById("exampleform");

form.onsubmit = checkData;

};

function checkData(event) {

if (document.getElementById("state").length != 2) {

alert("Error, invalid city/state."); // show error message

event.preventDefault();

return false; // stop form submission

}

} JS

Multiple listeners to the same event
element.addEventListener("event", function); JS

var button = document.getElementById("mybutton");

button.addEventListener("click", func1);

// button.onclick = func1;

button.addEventListener("click", func2);

// button.onclick = func2; JS

• if you assign onclick twice, the second one replaces the first
• addEventListener allows multiple listeners to be called for the same event
• (note that you do not include "on" in the event name!)

https://developer.mozilla.org/en-US/docs/DOM/element.addEventListener

Multiple window.onload listeners
window.onload = function;

window.addEventListener("load", function); JS

• it is considered bad form to directly assign to window.onload
• multiple .js files could be linked to the same page, and if they all need to run code

when the page loads, their window.onload statements will override each other
• by calling window.addEventListener instead, all of them can run their code

when the page is loaded

