
University of Washington, CSE 154
Homework Assignment 8: Fifteen Puzzle

This assignment is about JavaScript's Document Object Model (DOM) and events. You'll write the following page:

Background Information:
The Fifteen Puzzle (also called the Sliding Puzzle) is a simple classic game consisting of a 4x4 grid of numbered
squares with one square missing. The object of the game is to arrange the tiles into numerical order by repeatedly
sliding a square that neighbors the missing square into its empty space.

You will write the CSS and JavaScript code for a page fifteen.html that plays the Fifteen Puzzle. You will also
submit a background image of your own choosing, displayed underneath the tiles of the board. Choose any
image you like, so long as its tiles can be distinguished on the board. Turn in the following files:

• fifteen.js, the JavaScript code for your web page
• fifteen.css, the CSS styles for your web page
• background.jpg, your background image, suitable for a puzzle of size 400x400px

(go find any image you like, such as by Google Image Search; but don't use the Mario image above)

You will not submit any .html file, nor directly write any HTML code. We will provide you with the HTML code to
use, which should not be modified. (Download the .html file to your machine while writing your JavaScript code,
but your code should work with the provided files unmodified.) You will write JavaScript code that interacts with the
page using the DOM. To modify the page's appearance, write appropriate DOM code to change styles of on-screen
elements by setting classes, IDs, and/or style properties on them.

Additional features are found in a separate spec on the class web site. You do not need to complete any such
features.

Tip for playing the game: First get the entire top/left sides into proper position. That is, put squares number 1, 2, 3, 4, 5, 9, and 13
into their proper places. Now never touch those squares again. Now what's left to be solved is a 3x3 board, which is much easier.

Appearance Details:
All text on the page is displayed in a "cursive" font family, at a default font size of 14pt. Everything on the page is
centered, including the top heading, paragraphs, the puzzle, the Shuffle button, and the W3C buttons at bottom.

In the center of the page are fifteen tiles representing the puzzle. The overall puzzle occupies 400x400 pixels on
the page, horizontally centered. Each puzzle tile occupies a total of 100x100 pixels, but 5px on all four sides are
occupied by a black border. This leaves 90x90 pixels of area inside each tile. The HTML file given to you does not
contain the fifteen div elements to represent the puzzle pieces, and you are not supposed to modify the HTML file;
so you will have to create the puzzle pieces and add them to the page yourself using the JavaScript DOM. Initially
the page should appear with the puzzle in its properly arranged order like in the screenshot on the first page of this
spec, with 1 at top-left, 4 at top-right, 13 at bottom-left, the empty square at bottom-right, and so on.

Each tile displays a number from 1 to 15, in a 40pt font. Each tile displays part of the image background.jpg,
which you should put in the same folder as your page. Which part of the image is displayed by each tile is related to
that tile's number. The "1" tile shows the top-left 100x100 portion of the image. The "2" tile shows the next
100x100px of the background that would be to the right of the part shown under the "1" tile, and so on.

Your background image appears on the puzzle pieces when you set it as the background-image of each piece. By
adjusting the background-position of each div, you can show a different part of the background on each piece.
One confusing thing about background-position is that the x/y values shift the background behind the element, not
the element itself. The offsets are the negation of what you may expect. For example, if you wanted a 100x100px
div to show the top-right corner of a 400x400px image, set its background-position property to -300px 0px . The
following is a complete listing of the exact background-position values each location on the board should have:

 0px 0px -100px 0px -200px 0px -300px 0px

 0px -100px -100px -100px -200px -100px -300px -100px

 0px -200px -100px -200px -200px -200px -300px -200px

 0px -300px -100px -300px -200px -300px

Centered under the puzzle tiles is a Shuffle button that can be clicked to randomly rearrange the tiles of the puzzle.
See the "Shuffle Algorithm" section of this spec for more details about implementing the shuffle behavior.

All other style elements on the page are subject to the preference of the web browser. The screenshots in this
document were taken on Windows in Firefox, which may differ from your system.

Playing the Game:
When the mouse button is pressed on a puzzle square, if that square is next to the blank square, it is moved into the
blank space. If the square does not neighbor the blank square, no action occurs. Similarly, if the mouse is pressed
on the empty square or elsewhere on the page, no action occurs.

When the mouse hovers over a square that can be moved (neighbors the blank spot), its border and text color
should become red. Also, the mouse cursor should change into a "hand" cursor pointing at the square (do this by
setting the CSS cursor property to pointer.) Once the cursor is no longer hovering on the square, its appearance
should revert to its original state. When the mouse cursor hovers over a square that cannot be moved, it should use
the system's standard arrow cursor (set the cursor property to default) and it should not have the red text or
borders or other effects. (You may find it useful to use the :hover CSS pseudo-class to help deal with hovering.)

The game is not required to take any particular action when the puzzle has been won. You can decide if you'd like
to pop up an alert box congratulating the user or add any other optional behavior to handle this event. (See Extra
Features spec if you would like to implement end-of-game behavior.)

Shuffle Algorithm:
Centered under the puzzle tiles is a Shuffle button that can be clicked to randomly rearrange the tiles of the puzzle.
When the Shuffle button is clicked, the puzzle tiles are rearranged into a random ordering so that the user has a
challenging puzzle to solve.

The tiles must be rearranged into a solvable state. Some puzzle states are not solvable; for example, the puzzle
cannot be solved if you swap only its 14 and 15 tiles. Therefore your algorithm for shuffling cannot simply move
each tile to a completely random location. It must generate only solvable puzzle states if you want full credit.

We suggest that you generate a random valid solvable puzzle state by repeatedly choosing a random neighbor of the
missing tile and sliding it onto the missing tile's space. Roughly 1000 such random movements should produce a
well-shuffled board. Here is a rough pseudo-code of the algorithm we suggest for shuffling.

for (~1000 times):
 neighbors = [].
 for each neighbor n that is directly up, down, left, right from empty square:
 if n exists and is movable:
 neighbors.push(n).
 randomly choose an element i from neighbors.
 move neighbors[i] to the location of the empty square.

Notice that on each pass of our algorithm, it is guaranteed that one square will move. Some students write an
algorithm that randomly chooses any one of the 15 squares and tries to move it; but this is a poor way to shuffle
because many of the 15 squares are not neighbors of the empty square. Therefore the loop must repeat many more
times in order to shuffle the elements effectively, making it slow and causing the page to lag. This is not acceptable.

Your algorithm should be efficient; if it takes more than 1 second to run or performs a large number of tests and
calls unnecessarily, you may lose points. For full credit, your shuffle should have a good random distribution and
thoroughly rearrange the tiles and the blank position. You are not required to follow exactly the algorithm above,
but if you don't, your algorithm must exhibit the desired properties described in this section to receive full credit.

Your shuffle algorithm will need to incorporate randomness. You can generate a random integer from 0 to K,
which is helpful to randomly choose between K choices, by writing, parseInt(Math.random() * K) .

We suggest first implementing code to perform a single random move; that is, when Shuffle is clicked, randomly pick
one square near the empty square and move it. Get it to do this once then work on doing it many times in a loop.

In your shuffle algorithm, or elsewhere in your program, you may want access to the DOM object for a square at a
particular row/column or x/y position. We suggest you write a function that accepts a row/column as parameters
and returns the DOM object for the corresponding square. It may be helpful to you to give an id to each square,
such as "square_2_3" for the square in row 2, column 3, so that you can more easily access the squares later in your
JavaScript code. (If any square moves, you will need to update its id value to match its new location.)

Use these ids appropriately. Don't break apart the string "square_2_3" to extract the 2 or 3. Instead, use the ids to
access the corresponding DOM object: e.g., for the square at row 2, column 3, make an id string of "square_2_3".

Development Strategy:
Students generally find this to be a tricky assignment. Here is a suggested ordering for tackling the steps:

• Make the fifteen puzzle pieces appear in the correct positions without any background behind them.
• Make the correct parts of the background show through behind each tile.
• Write the code that moves a tile when it is clicked from its current location to the empty square's location.

Don't worry initially about whether the clicked tile is "movable" (whether it is next to the empty square).
• Write code to determine whether a square can move or not (whether it neighbors the empty square).

Implement a highlight when the mouse hovers over movable tiles. Track where the empty square is at all times.

Hints:
• Use absolute positioning to set the x/y locations of each puzzle piece. The overall puzzle area must use a

relative position in order for the x/y offsets of each piece to be relative to the puzzle area's location.
• You can convert a string to a number using parseInt. This also works for strings that start with a number and

end with non-numeric content. For example, parseInt("123four") returns 123.
• Many students have bugs related to not setting their DOM style properties using proper units and formatting.

The string you assign in your JS code must exactly match what would have been in the CSS file. For example, if
you want to set the size of an element, a value like 42 or "42" will fail, but "42px" or "42em" will succeed. When
setting a background image, a value like "foo.jpg" will fail, but "url(foo.jpg)" will succeed. When setting a
background position, "42 35" will fail but "42px 35px" will succeed. And so on.

• We suggest that you do not explicitly make a div to represent the empty square of the puzzle. Keep track of
where it is, such as by row/column or by x/y position, but don't create an actual DOM element for it. We also
suggest that you not store your puzzle squares in a 2-D array. This might seem like a good structure because of
the 4x4 appearance of the grid, but it is bad style and will be difficult to keep it up to date as the squares move.

• Many students have redundant code because they don't create helper functions. You should write functions for
common operations, such as moving a particular square, or for determining whether a given square currently can
be moved. The this keyword (see book section 9.1) can be helpful for reducing redundancy.

Implementation and Grading:
For full credit, your HTML and CSS code must pass the W3C validators. Your HTML and CSS should also follow
the style guide posted on the class web site.

Separate content (HTML), presentation (CSS), and behavior (JS). Your JS code should use styles and classes from
the CSS rather than manually setting each style property in the JS. For example, rather than setting the .style of a
DOM object, instead, give it a className and put the styles for that class in your CSS file. Style properties related to
x/y positions of tiles and their backgrounds are impractical to put in the CSS file, so those can be in your JS code.

Use unobtrusive JavaScript so that no JavaScript code, onclick handlers, etc. are embedded into the HTML code.

You should not use any external JavaScript frameworks or libraries such as jQuery to solve this assignment.

Your JavaScript code should pass our JSLint tool with no errors.
Your .js file must run in strict mode by putting "use strict"; at the top.

Follow the JavaScript style guidelines posted on the class web site. Make extra effort to minimize redundant code.
Capture common operations as functions to keep code size and complexity from growing. You can reduce your
code size by using the this keyword in your event handlers.

No global variables or functions are allowed. To avoid globals, use the module pattern as taught in lecture,
wrapping your code in an anonymous function invocation. Even if you use the module pattern, limit the amount of
"module-global" variables to those that are truly necessary; values should be local as much as possible. If a particular
literal value is used frequently, declare it as a module-global "constant" variable IN_UPPER_CASE and use the constant
in your code. Do not store DOM element objects, such as those returned by document.getElementById or
document.querySelectorAll, as module-global variables. As a reference, our own solution has only four module-
global variables: the empty square's row and column (initially both are set to 3), the number of rows/cols in the
puzzle (4), and the pixel width/height of each tile (100). The last two are essentially constants.

Your JavaScript code should have adequate commenting. The top of your file should have a descriptive comment
header describing the assignment, and each function and complex section of code should be documented.

Format your code similarly to the examples from class. Properly use whitespace and indentation. Use good
variable and method names. Avoid lines of code more than 100 characters wide. For reference, our .js file has
roughly 160 lines (110 "substantive"), and our CSS file has roughly 50 lines.

Do not place your solution on a public web site. Submit your own work and follow the course misconduct policy.

Put your files on Webster at: https://webster.cs.washington.edu/students/your_uwnetid/hw8/fifteen.html

Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

	University of Washington, CSE 154 Homework Assignment 8: Fifteen Puzzle
	Background Information:
	Appearance Details:
	Playing the Game:
	Shuffle Algorithm:
	Development Strategy:
	Hints:
	Implementation and Grading:

