
University of Washington, CSE 154
Homework Assignment 3: Movie Review Part Deux

For this assignment you will modify your HW2 movie review page using PHP code to make the page more flexible and
powerful. Your PHP code will allow you to show reviews for a variety of movies using the same code. Turn in these files:

• movie.php, the PHP code to produce review pages for movies
• movie.css, the style sheet for movie.php

The overall page looks nearly the same as it did in the previous assignment. The main difference is that the page can show
reviews and information for a film other than TMNT. For example, the following output shows The Princess Bride:

To make things simpler, the page's title should now always be just "Rancid Tomatoes".

From the course web site you will download a .ZIP archive of input files for many movies, described on the next page.
Unzip this file into the same directory as your HW3 files, so that the files will be located in relative paths such as
tmnt2/info.txt and princessbride/overview.png. Your code should assume these are the relative paths to use.
(Don't put them in a moviefiles/ folder. Put each film's folder, such as tmnt2/ or mortalkombat/, directly in your hw3 folder.)

The page uses the same images as HW2, with two minor changes. The tmnt.html page showed rottenlarge.png next to
its 33% rating. But now some films have high overall ratings. Any film whose rating is 60% or above should show
freshlarge.png, shown at right. Also overview.png has moved, since each movie has its own overview
image. Link to all of the "fixed" images using their full absolute URLs, not relative ones. The overview
images are the one exception; since these now come from the support ZIP file and reside in the folder
with the movie's information, link to these using a relative path such as "tmnt2/overview.png".

All style elements not described here should be as specified in HW2 or subject to the preference of the web browser. The
screenshots in this document were taken on Windows in the latest version of Firefox, which may differ from your system.

Appearance Details:
Your movie.php page will show reviews of different movies based upon a query parameter named film that is passed from
the browser to the page in its URL. The value of this variable should be a string representing the movie to display. The
browser will request your page with a URL such as the following:

https://webster.cs.washington.edu/your_uwnetid/hw3/movie.php?film=princessbride

Your PHP code can store this parameter's into a variable using code such as the following:

$movie = $_GET["film"];
All of your PHP code should use this parameter's value, and you should never hard-code particular movie names. Your
code may assume that the browser has properly supplied this parameter and has given it a valid value. You may assume
that the movie exists and has a corresponding folder of valid input data and images. You do not have to handle the case
of a missing or empty film parameter, a value that contains bad characters, a value of a movie that is not found, etc.

Based upon the movie name variable's value, display a review of that film. Each film is stored in a directory named the
same as your query parameter. For example, the film princessbride stores its files in a folder named princessbride/ .
The files associated with each movie are the following. You may assume that the files exist and are valid at all times.

• info.txt, a file with three lines of information about the film: its title, year, and overall rating percentage. The
information is used as the page heading and overall red movie rating number. Here's an example file:

The Princess Bride
1987
95

• overview.txt, a file with information to be placed in the General Overview section of your page. Each pair of
neighboring lines contains the title and value for one item of information, to be displayed as a definition list term
(dt) and its description (dd). The number of lines in the file varies from movie to movie. Example:

STARRING:Cary Elwes, Robin Wright, Andre the Giant, Mandy Patinkin
DIRECTOR:Rob Reiner
PRODUCER:Arnold Scheinman, Rob Reiner
SCREENWRITER:William Goldman
...

• overview.png, an image to display at the top of the General Overview section. This is the movie poster for the
film, such as the one shown at right.

• review1.txt, review2.txt, ..., files containing information for each review of the film. Each
review file contains exactly four lines: The review, a fresh/rotten rating, the reviewer's name,
and the publication. For example, review1.txt might store the following:

One of Reiner's most entertaining films, effective as a ...
FRESH
Emanuel Levy
emanuellevy.com

◦ Different movies have different numbers of reviews. Show the first half of the reviews in the left column,
and the rest on the right. If a movie has an odd number of reviews, the left column receives the extra
review. For example, Princess Bride has 7 reviews, with the first four go on the left and the last three on the
right. If a movie has only a single review, it goes in the left column. Do not worry about the possibility that
the overview and reviews sections will be wildly different in height. (You may assume that the film has at least 1
review, but it might have 10 or more; you should display them all.) The green bar along the bottom of the page also
should now display "(1 - N) of N" where N is the number of reviews for the current movie.

If a review has 10 or more reviews (such as tmnt2), the names will be e.g. review01.txt, So don't hard-
code file names like "review1.txt"; look for all files that begin with "review" and end with ".txt".

◦ The image to show for each review is affected by the second line of the review's text file. If the critic gave
the film a FRESH rating, display fresh.gif. If it's ROTTEN, display rotten.gif.

For example, if your variable stores "princessbride", open princessbride/info.txt to read the film's title/year/etc. and
display that on the page. Open princessbride/overview.txt and display its contents in the General Overview section on
the right side. Then look for all review files in princessbride/ and display each in the reviews area.

The page also has two of its banner sections repeated. The top "Rancid Tomatoes" banner now appears at the very

bottom of the page in addition to the top of the page. The green central bar listing the film's overall rating (such as 95%
for Princess Bride) is modified to occupy the full width of the central area of the page and is repeated at the bottom of
that central area. You should modify your HTML/CSS/PHP code to produce these changes in the page appearance.

We do not expect you to produce a pixel-perfect page that exactly matches our images. But your page should follow the
styles specified in this document and match the look, layout, and behavior shown here as closely as possible.

Creative Aspect: Your Own Movie
As part of your turnin, create your own set of movie input data to be fed into your movie.php page. Write an info.txt,
overview.txt, and at least 4 review text files for your movie. Also find a suitable image to use as overview.png of size
250x412px. You can resize an image using the free GIMP editor or a program of your choice. Turn in your movie's files
as mymovie.zip along with your assignment.

Extra Features:
In addition to the previous required features, everyone must also complete two (2) of the following additional
requirements in the movie page. If you want to complete more, that is fine, but it is not required and will be ignored in
grading.

1. Query parameter for count of reviews: Make your page accept a second optional integer query parameter
named reviews that indicates the number of reviews to show. For example, if the browser requests movie.php?
film=tmnt&reviews=5, you will show only the first 5 reviews available for that film. You may assume that if
the parameter is passed, the value will be an integer. If the value is negative, treat it as though it were 0 and show
no reviews. If the value is greater than the number of available reviews for that film, just show every available
review for that film. For example, since there are 8 reviews for the film TMNT, reviews=8 would have the same
effect as reviews=999. If the parameter is not passed at all, just show all reviews for the film like usual.

The presence of the reviews parameter should also change the bottom text listing the count of reviews, such as
"(1-8) of 8". For example, if reviews=5, it should read "(1-5) of 8".

2. Top/bottom banners fixed: Set the page's top "Rancid Tomatoes" banner to lock into a fixed position and add
a second copy of that banner that is fixed at the bottom of the page. Both banners should remain visible on the
screen and not move or scroll when the user scrolls the page. To keep the bottom banner from covering up other
page content, give the page's body a bottom margin of 60px, and give the bottom-right W3C images a bottom
margin of 50px.

3. Changing page title: Instead of having the title always be "Rancid Tomatoes", make it change based on the
film. For example, if the film is "Mortal Kombat", the title should be "Rancid Tomatoes - Mortal Kombat".

4. Error message when movie is not passed: When the film parameter is not passed, or when the parameter
refers to an invalid movie (one that does not have a corresponding folder in your program's directory), output an
error message. The exact format of the error message is unimportant; for example, the page can just be a plain
white page with a message such as, "Film not found: foobar." (But the error message page should still pass the
W3C HTML validator.) If the movie's folder exists, you may still assume that the folder contains all of the
necessary files to display the film and that these files contain the proper information.

5. Meta tags in HTML: Insert meta tags in the head section of the HTML (PHP) file to describe the page. Insert
three meta tags: one to specify that the page's character set is UTF-8, one that gives a description of the page, and
one to list some relevant keywords to search for the page. Follow the syntax from the lecture slides or Chapter 2.

Other: Do you have an extra feature you'd like to add to your page that isn't listed here? Ask us on the course
message board and we'll let you know if it is okay to substitute for one of the above.

Expected output images are provided on the course web site for the standard version of the page as well as for the extra
features version of the page. All of the above features can be implemented using HTML/CSS features shown in the
textbook Chapters 2-6 or the lecture slides.

Development Strategy and Hints:
PHP code is difficult to debug if you have errors. Write the program incrementally, adding small pieces of code to a
working page, and not advancing until you have tested the new code. We suggest that get your page to display a single film
(such as princessbride or tmnt2) first, then generalize it for other films. None of your code should refer to specific
names of films such as princessbride. The following functions may be helpful:

• count - returns the number of elements in an array
• explode - breaks apart a string into an array of smaller strings based on a delimiter
• file - reads the lines of a file and returns them as an array
• glob - given a file path or wildcard such as "foo/bar/*.jpg", returns an array of matching file names
• list - unpacks an array into a set of variables; useful for dealing with fixed-size arrays of data
• trim - removes whitespace at the start/end of a string (gets rid of stray spaces in output)

Go to php.net/functionName in your browser for more information about any function.

Implementation and Grading:
Still turn in your movie.css even if it did not change. Our movie.php solution is about 120 lines long (90 "substantive").
For full credit, your HTML, CSS, and PHP code should follow the rules listed in the Style Guide on the class web site.

For full credit, your page's output for all films must successfully pass the W3C HTML validator. (Not the PHP source
code itself, but the HTML output it generates, must validate. To validate your page, view the page on the server, then
choose View Source in your browser and copy/paste it into the validator.) Do not use HTML tables on this assignment.

Your PHP code should not cause errors or warnings. We will also grade the style of your PHP code; like a CSE 14x
assignment. Do not use the global keyword. Use indentation/spacing, and avoid long lines over 100 characters. Use
material from the first three weeks of class and the first five book chapters. (Textbook Chapter 5 is a good resource.)

Make sure to test your code on all available movies from the ZIP file. You may want to think about other edge cases, such
as what your page should do if the film has only a single review (it should show in the left-hand column), etc.

Be mindful of "mode switches" between PHP code and HTML tags using <?php and ?> . Produce as much of your
output in HTML mode as possible; only switch to "PHP mode" to compute or print dynamic content. For full credit, you
should reduce the number of large complex chunks of PHP code that are placed in the middle of your HTML code.
When possible, replace such chunks with functions that are called in the HTML and declared at the bottom of your file.
For full credit your code must have at least one function to remove redundancy that would otherwise exist in the HTML.
HTML or PHP code that is redundant should be placed into a function to remove the redundancy as much as possible.
Recall that if code is nearly but not exactly the same, you can use functions with parameters to remove the redundancy.

Your file should not contain any print and echo statements. Instead, insert dynamic content into the page using PHP
expression blocks with <?= ... ?> as taught in class.

Another grading focus is redundancy. You should not have code that depends on particular movies or uses if/else
statements to see which movie to display. Use loops, variables, if/else factoring, etc. to avoid redundancy.

Another grading focus is PHP commenting. We expect more comments here, similar to CSE 14x. Put a descriptive
header (name, course, TA, description) at the top of your code and comment each non-trivial section of PHP code
explaining the purpose of that code.

Format your HTML and PHP code similarly to the examples from class. Properly use whitespace and indentation. Do
not place more than one block element on a line or begin a block element past the 100th character. CSS is not a major
part of this assignment, but your CSS file should validate and you should not introduce new bad/invalid CSS code.

Part of your grade will also come from successfully uploading your files to the Webster web server in a subdirectory
named hw3, so that it is possible to navigate to your page by entering the following URL into the browser:

• https://webster.cs.washington.edu/students/your_uwnetid/hw3/movie.php

Please do not place a solution to this assignment online on a publicly accessible web site.

Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

	University of Washington, CSE 154 Homework Assignment 3: Movie Review Part Deux
	Appearance Details:
	Creative Aspect: Your Own Movie
	Extra Features:
	Development Strategy and Hints:
	Implementation and Grading:

