
Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1

2

3

Road Map - Quarter
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList 🛠
• LinkedList 🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Road Map - Week
 Monday

 Introduce idea of “recursion”
 Goal: Understand idea of recursion and read recursive code.

 Tuesday
 Practice reading recursive code

 Wednesday
 More complex recursive examples
 Goal: Identify recursive structure in problem and write

recursive code

 Thursday
 Practice writing recursive code

 Friday
 Exam logistics
 Set-up for A5

5

Exercise
 (To a student in the front row)

How many students total are directly behind you in your
"column" of the classroom?

 You have poor vision, so you can
see only the people right next to you.
So you can't just look back and count.

 But you are allowed to ask
questions of the person next to you.

 How can we solve this problem?
(recursively)

6

Recursive algorithm
 Number of people behind me:

 If there is someone behind me,
ask him/her how many people are behind him/her.
 When they respond with a value N, then I will answer N + 1.

 If there is nobody behind me, I will answer 0.

7

The idea
 Recursion is all about breaking a big problem into smaller

occurrences of that same problem.

 Each person can solve a small part of the problem.
 What is a small version of the problem that would be easy to

answer?
 What information from a neighbor might help me?

8

Recursion
 recursion: The definition of an operation in terms of itself.

 Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

 recursive programming: Writing methods that call
themselves to solve problems recursively.

 An equally powerful substitute for iteration (loops)
 Particularly well-suited to solving certain types of problems

9

10

Why learn recursion?
 "Cultural experience" – think differently about problems

 Solves some problems more naturally than iteration

 Can lead to elegant, simplistic, short code (when used well)

 Many programming languages ("functional" languages such
as Scheme, ML, and Haskell) use recursion exclusively (no
loops)

 A key component of many of our assignments in CSE 143

11

Getting down stairs
 Need to know two things:

 Getting down one stair
 Recognizing the bottom

 Most code will look like:
if (simplest case) {

compute and return solution

} else {

divide into similar subproblem(s)

solve each subproblem recursively

assemble the overall solution

}

12

Recursion and cases
 Every recursive algorithm involves at least 2 cases:

 base case: A simple occurrence that can be answered
directly.

 recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

 Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

 A crucial part of recursive programming is identifying these
cases.

13

Linked Lists are Self-Similar
 a linked list is:

 null
 a node whose next field references a list

 recursive data structure: a data structure partially
composed of smaller or simpler instances of the same data
structure

14

15

16

Another recursive task
 How can we remove exactly half of the M&M's in a large

bowl, without dumping them all out or being able to count
them?

 What if multiple people help out with solving the problem?
Can each person do a small part of the work?

 What is a number of M&M's
that it is easy to double,
even if you can't count?

 (What is a "base case"?)

17

Recursion in Java
 Consider the following method to print a line of *

characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars(int n) {

for (int i = 0; i < n; i++) {
System.out.print("*");

}
System.out.println(); // end the line of output

}

 Write a recursive version of this method (that calls itself).
 Solve the problem without using any loops.
 Hint: Your solution should print just one star at a time.

18

A basic case
 What are the cases to consider?

 What is a very easy number of stars to print without a loop?

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else {
...

}
}

19

Handling more cases
 Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else if (n == 2) {
System.out.print("*");
System.out.println("*");

} else if (n == 3) {
System.out.print("*");
System.out.print("*");
System.out.println("*");

} else if (n == 4) {
System.out.print("*");
System.out.print("*");
System.out.print("*");
System.out.println("*");

} else ...
}

20

Handling more cases 2
 Taking advantage of the repeated pattern (somewhat

better):
public static void printStars(int n) {

if (n == 1) {
// base case; just print one star
System.out.println("*");

} else if (n == 2) {
System.out.print("*");
printStars(1); // prints "*"

} else if (n == 3) {
System.out.print("*");
printStars(2); // prints "**"

} else if (n == 4) {
System.out.print("*");
printStars(3); // prints "***"

} else ...
}

21

Using recursion properly
 Condensing the recursive cases into a single case:

public static void printStars(int n) {
if (n == 1) {

// base case; just print one star
System.out.println("*");

} else {
// recursive case; print one more star
System.out.print("*");
printStars(n - 1);

}
}

22

"Recursion Zen"
 The real, even simpler, base case is an n of 0, not 1:

public static void printStars(int n) {
if (n == 0) {

// base case; just end the line of output
System.out.println();

} else {
// recursive case; print one more star
System.out.print("*");
printStars(n - 1);

}
}

 Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

23

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else {

System.out.print("*");

writeStars(n – 1);

}

}

24

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println(); // base case. assert: n == 0

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println(); // base case

} else {

System.out.print("*");

writeStars(n – 1);

}

}

25

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*"); // small piece of problem

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*"); // small piece of problem

writeStars(n – 1);

}

}

Recursion vs Iteration

26

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*");

n--; // make the problem smaller

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*");

writeStars(n – 1); // make the problem smaller

}

}

Recursion vs Iteration

27

Recursive tracing
 Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {

return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

}
}

 What is the result of the following call?
mystery(648)

28

A recursive trace
mystery(648):

 int a = 648 / 10; // 64

 int b = 648 % 10; // 8

 return mystery(a + b); // mystery(72)

mystery(72):

 int a = 72 / 10; // 7

 int b = 72 % 10; // 2

 return mystery(a + b); // mystery(9)

mystery(9):

 return 9;

29

Recursive tracing 2
 Consider the following recursive method:

public static int mystery(int n) {
if (n < 10) {

return (10 * n) + n;
} else {

int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

}
}

 What is the result of the following call?
mystery(348)

30

A recursive trace 2
mystery(348)

 int a = mystery(34);
 int a = mystery(3);

return (10 * 3) + 3; // 33

 int b = mystery(4);
return (10 * 4) + 4; // 44

 return (100 * 33) + 44; // 3344

 int b = mystery(8);
return (10 * 8) + 8; // 88

 return (100 * 3344) + 88; // 334488

 What is this method really doing?

31

Exercise
 Note: We did reverseDeck in lecture but they are the

exact same problem
 Write a recursive method reverseLines that accepts a file
Scanner and prints the lines of the file in reverse order.

 Example input file: Expected console output:

I have eaten the icebox

the plums that were in

that were in the plums

the icebox I have eaten

 What are the cases to consider?
 How can we solve a small part of the problem at a time?
 What is a file that is very easy to reverse?

32

Reversal pseudocode
 Reversing the lines of a file:

 Read a line L from the file.
 Print the rest of the lines in reverse order.
 Print the line L.

 If only we had a way to reverse the rest of the lines of
the file....

33

Reversal solution
public static void reverseLines(Scanner input) {

if (input.hasNextLine()) {
// recursive case
String line = input.nextLine();
reverseLines(input);
System.out.println(line);

}
}

 Where is the base case?

34

output:input file:
I have eaten
the plums
that were in
the icebox

the icebox
that were in
the plums
I have eaten

Tracing our algorithm
 call stack: The method invocations currently running

reverseLines(new Scanner("poem.txt"));
public static void reverseLines(Scanner input) {

if (input.hasNextLine()) {
String line = input.nextLine(); // "I have eaten"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the plums"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "that were in"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the icebox"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) { // false

...
}

}

