
Building Java Programs

Chapter 11
Sets and Maps

reading: 11.2 - 11.3

2

3

Road Map
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList🛠
• LinkedList🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Exercise
 Write a program that counts the number of unique words in

a large text file (say, Moby Dick or the King James Bible).

 Store the words in a collection and report the # of unique
words.

 Once you've created this collection, allow the user to search it
to see whether various words appear in the text file.

 What collection is appropriate for this problem?

5

Sets (11.2)
 set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:
 add, remove, search (contains)

 We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("be") false

6

Set implementation
 in Java, sets are represented by Set type in java.util

 Set is implemented by HashSet and TreeSet classes

 TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

 HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

7

Set methods
List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty
Set<String> set2 = new HashSet<String>(list);

 can construct an empty set, or one based on a given collection

add(value) adds the given value to the set
contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set
clear() removes all elements of the set
size() returns the number of elements in list
isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

8

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

 Provides a clean syntax for looping over the elements of a
Set, List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {
System.out.println("Student's grade: " + grade);

}

 needed because sets have no indexes; can't get element i

9

Exercise
 Write a program to count the number of occurrences of

each unique word in a large text file (e.g. Moby Dick).

 Allow the user to type a word and report how many times that
word appeared in the book.

 Report all words that appeared in the book at least 500 times,
in alphabetical order.

 What collection is appropriate for this problem?

10

Counting
 What if we wanted to use something other than an int as

an index?
 count digits: 22092310907

// (C)hocolate, (V)anilla, (S)trawberry
 count votes: ”CVVVVVVCCCCCVVVVVVCVCCSCVCCSCVCCSV"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key ”C" ”V" "S"

value 16 14 3

11

Maps (11.3)
 map: Holds a set of unique keys and a collection of values,

where each key is associated with one value.
 a.k.a. "dictionary", "associative array", "hash"

 basic map operations:
 put(key, value): Adds a

mapping from a key to
a value.

 get(key): Retrieves the
value mapped to the key.

 remove(key): Removes
the given key and its
mapped value.

myMap.get("Aug") returns 37.3

12

Maps (11.3)
 map: Holds a set of key-value pairs, where each key is

unique
a.k.a. "dictionary", "associative array", "hash"

map.get("the")

56

set

key value

"the" 56

key value

"why" 14

key value

"you" 22

key value

"me" 31

key value

"in" 37

key value

"at" 43

13

Map implementation
 in Java, maps are represented by Map type in java.util

 Map is implemented by the HashMap and TreeMap classes

 TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

 HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

 A map requires 2 type params: one for keys, one for
values.

// maps from String keys to Integer values
Map<String, Integer> votes = new HashMap<String, Integer>();

14

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map
values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

15

Using maps
 A map allows you to get from one half of a pair to the

other.
 Remembers one piece of information about every index (key).

 Later, we can supply only the key and get back the related
value:

Allows us to ask: What is Suzy's phone number?

Map

get("Suzy")

"206-685-2181"

Map

// key value
put("Suzy", "206-685-2181")

16

keySet and values
 keySet method returns a Set of all keys in the map

 can loop over the keys in a foreach loop
 can get each key's associated value by calling get on the map
Map<String, Integer> ages = new TreeMap<String, Integer>();
ages.put("Marty", 19);
ages.put("Geneva", 2); // ages.keySet() returns Set<String>
ages.put("Vicki", 57);
for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(name); // Marty -> 19
System.out.println(name + " -> " + age); // Vicki -> 57

}

 values method returns a collection of all values in the map
 can loop over the values in a foreach loop
 no easy way to get from a value to its associated key(s)

