
Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

2

3

Road Map
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList🛠
• LinkedList🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

5

Runtime Efficiency (13.2)
 efficiency: measure of computing resources used by code.

 can be relative to speed (time), memory (space), etc.
 most commonly refers to run time

 We want to be able to compare different algorithms to see
which is more efficient

6

Efficiency Try 1
 Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 0ms, sum2 took 0ms

n = 10,000,000 sum1 took 10ms, sum2 took 0ms

n = 100,000,000 sum1 took 47ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 784ms, sum2 took 0ms

 Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 8ms, sum2 took 0ms

n = 100,000,000 sum1 took 43ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 804ms, sum2 took 0ms

 Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 3ms, sum2 took 0ms

n = 100,000,000 sum1 took 121ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 1570ms, sum2 took 0ms

 Downsides
 Different computers give different run times
 The same computer gives different results!!! D:<

7

Efficiency – Try 2
 Count number of “simple steps” our algorithm takes to run
 Assume the following:

 Any single Java statement takes same amount of time to run.
 int x = 5;

 boolean b = (5 + 1 * 2) < 15 + 3;

 System.out.println(“Hello”);

 A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

 A method call's runtime is measured by the total runtime of
the statements inside the method's body.

8

public static void method1(int N) {
statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
statement4;

}

for (int i = 1; i <= N; i++) {
statement5;
statement6;
statement7;

}
}

Efficiency examples

3

N

3N

4N + 3

9

Efficiency examples 2
public static void method2(int N) {

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {
statement2;
statement3;
statement4;
statement5;

}
}

 How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

10

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

N

1

1

1

N + 2

1

11

Visualizing Difference

12

Algorithm growth rates (13.2)

 We measure runtime in proportion to the input data size, N.
 growth rate: Change in runtime as N changes.

 Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.
 Consider the runtime when N is extremely large .

 We ignore constants like 25 because they are tiny next to N.
 The highest-order term (N3) dominates the overall runtime.

 We say that this algorithm runs "on the order of" N3.
 or O(N3) for short ("Big-Oh of N cubed")

13

pollev.com/cse143

 Suppose our list had the contents

 What is the Big-O efficiency for this function?
 O(1)
 O(n)
 O(7n)
 O(7n + 4);
 O(n2)
 O(n3)

public void method(int n) {
int value = 0;
for (int i = 0; i < 7; i++) {

for (int j = 0; j < n; j++) {
value += j;

}
}
return value + n / 2;

}

14

Complexity classes
 complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

15

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

16

Range algorithm
What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

17

Range algorithm
What complexity class is this algorithm? Can it be improved?

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

18

Range algorithm 2
The last algorithm is O(N2). A slightly better version:

// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {

for (int j = i + 1; j < numbers.length; j++) {
int diff = Math.abs(numbers[j] – numbers[i]);
if (diff > maxDiff) {

maxDiff = diff;
}

}
}
return diff;

}

19

Range algorithm 3
This final version is O(N). It runs MUCH faster:

// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {

int max = numbers[0]; // find max/min values
int min = max;
for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < min) {
min = numbers[i];

}
if (numbers[i] > max) {

max = numbers[i];
}

}
return max - min;

}

20

Runtime of first 2 versions
 Version 1:

 Version 2:

21

Runtime of 3rd version
 Version 3:

22

Searching methods
 Implement the following methods:

 indexOf – returns first index of element, or -1 if not found
 contains - returns true if the list contains the given int value

 Why do we need isEmpty and contains when we already
have indexOf and size ?
 Adds convenience to the client of our class:

// less elegant // more elegant

if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

23

Sequential search
 sequential search: Locates a target value in an array /

list by examining each element from start to finish. Used in
indexOf.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

24

Sequential search
 What is its complexity class?

public int indexOf(int value) {
for (int i = 0; i < size; i++) {

if (elementData[i] == value) {
return i;

}
}
return -1; // not found

}

 On average, "only" N/2 elements are visited
 1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

25

Binary search (13.1)
 binary search: Locates a target value in a sorted array or

list by successively eliminating half of the array from
consideration.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

26

Arrays.binarySearch
// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, value)

// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch(array, minIndex, maxIndex, value)

 The binarySearch method in the Arrays class searches an
array very efficiently if the array is sorted.
 You can search the entire array, or just a range of indexes

(useful for "unfilled" arrays such as the one in ArrayIntList)

27

Using binarySearch
// index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};

int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7

 binarySearch returns the index where the value is found

 if the value is not found, binarySearch returns:
-(insertionPoint + 1)

• where insertionPoint is the index where the element would
have been, if it had been in the array in sorted order.

• To insert the value into the array, negate insertionPoint + 1

int indexToInsert21 = -(index2 + 1); // 6

28

Binary search
 binary search successively eliminates half of the

elements.

 Algorithm: Examine the middle element of the array.
 If it is too big, eliminate the right half of the array and repeat.
 If it is too small, eliminate the left half of the array and repeat.
 Else it is the value we're searching for, so stop.

 Which indexes does the algorithm examine to find value 42?
 What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

29

Binary search runtime
 For an array of size N, it eliminates ½ until 1 element

remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

 How many divisions does it take?

 Think of it from the other direction:
 How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
 Call this number of multiplications "x".

2x= N
x = log2 N

 Binary search is in the logarithmic complexity class.

30

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

31

 Efficiency of our Java's ArrayList and LinkedList methods:

* Most of the time!

Collection efficiency

Method ArrayList LinkedList
add

add(index, value)
indexOf

get

remove

set

size

Method ArrayList LinkedList
add O(1)* O(1)
add(index, value) O(N) O(N)
indexOf O(N) O(N)
get O(1) O(N)
remove O(N) O(N)
set O(1) O(N)
size O(1) O(1)

32

Throw Back: Unique words
 Recall two weeks ago when we counted the number of

unique words in a file. Our first attempt

public static int uniqueWords(Scanner input) {

List<String> words = new LinkedList<String>();

while (input.hasNext()) {

String word = input.next();

if (!words.contains(word)) {

words.add(word);

}

}

return words.size();

}

33

Throw Back: Unique words
 Recall two weeks ago when we counted the number of

unique words in a file. Our second attempt
 We saw briefly that operations on HashSet are O(1)

public static int uniqueWords(Scanner input) {

Set<String> words = new HashSet<String>();

while (input.hasNext()) {

String word = input.next();

words.add(word);

}

return words.size();

}

34

Max subsequence sum
 Write a method maxSum to find the largest sum of any contiguous

subsequence in an array of integers.
 Easy for all positives: include the whole array.
 What if there are negatives?

 (Let's define the max to be 0 if the array is entirely negative.)

 Ideas for algorithms?

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

Largest sum: 10 + 15 + -2 + 22 = 45

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

35

Algorithm 1 pseudocode
maxSum(a):

max = 0.
for each starting index i:

for each ending index j:
sum = add the elements from a[i] to a[j].
if sum > max,

max = sum.

return max.

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

36

Algorithm 1 code
 What complexity class is this algorithm?

 O(N3). Takes a few seconds to process 2000 elements.

public static int maxSum1(int[] a) {
int max = 0;
for (int i = 0; i < a.length; i++) {

for (int j = i; j < a.length; j++) {
// sum = add the elements from a[i] to a[j].
int sum = 0;
for (int k = i; k <= j; k++) {

sum += a[k];
}
if (sum > max) {

max = sum;
}

}
}
return max;

}

37

Flaws in algorithm 1
 Observation: We are redundantly re-computing sums.

 For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

 Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

 We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

 Let's write an improved version that avoids this flaw.

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

38

Algorithm 2 code
 What complexity class is this algorithm?

 O(N2). Can process tens of thousands of elements per second.

public static int maxSum2(int[] a) {
int max = 0;
for (int i = 0; i < a.length; i++) {

int sum = 0;
for (int j = i; j < a.length; j++) {

sum += a[j];
if (sum > max) {

max = sum;
}

}
}
return max;

}

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

39

A clever solution
 Claim 1 : A max range cannot start with a negative-sum range.

 Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

 Together, these observations lead to a very clever algorithm...

i ... j j+1 ... k

< 0 sum(j+1, k)

sum(i, k) < sum(j+1, k)

i ... j-1 j j+1 ... k

≥ 0 < 0 sum(j+1, k)

< 0 sum(j+1, k)

sum(?, k) < sum(j+1, k)

40

Algorithm 3 code
 What complexity class is this algorithm?

 O(N). Handles many millions of elements per second!

public static int maxSum3(int[] a) {
int max = 0;
int sum = 0;
int i = 0;
for (int j = 0; j < a.length; j++) {

if (sum < 0) { // if sum becomes negative, max range
i = j; // cannot start with any of i - j-1
sum = 0; // (Claim 2)

}
sum += a[j];
if (sum > max) {

max = sum;
}

}
return max;

}

