Major themes

- Abstraction
 - Leverage existing components without understanding details
 - Create components that can be used as black boxes

- Design tradeoffs
 - Algorithm analysis - scalability and growth
 - Keeping code easy to read for maintainability

- Recursion
 - Reason about problems in terms of self-similarity
 - Write very short code to achieve complex behaviors

- Art – "A programmer who subconsciously views himself as an artist will enjoy what he does and will do it better." (Knuth)
Beyond programming

- Mind-controlled robots
 - http://www.youtube.com/watch?v=TQ7EOpPNQyw

- Muscle-controlled interfaces
 - [http://www.youtube.com/watch?v= pktVSTwC8qo](http://www.youtube.com/watch?v=pktVSTwC8qo)

- 3D models from pictures
 - http://www.youtube.com/watch?v=25Yifq70eIY

- Face aging
 - http://www.youtube.com/watch?v=fLQtssJDMMc

- Animation
 - http://www.youtube.com/watch?v=b4kkPILdMvI

- Security
What project?

- Little text-processing applications
 - identify lines above 100
 - remove line-breaks
- Add a GUI to the random sentence generator
- Automate chemistry, physics, calculus problems, etc
- Find quotes by keyword in books
- What are you currently doing that a computer could do?
What language?

- Expanding your Java knowledge with a project is valuable

- Pick a project, see what language is most appropriate
 - iOS: Swift
 - Android: Java
 - Client-side web: Javascript (many frameworks to choose from)
 - Beautiful visuals: Processing
 - Quick data processing: Python
 - Embedded systems: C/C++

- Learn a new paradigm
 - Functional languages: Racket, Haskell (now, Java 8, too!)
Leveraging existing code

- Processing language
 - http://nlp.stanford.edu/software/

- Building games
 - http://lwjgl.org/
 - http://jbox2d.org/ (with physics!)

- Processing biological data
 - http://biojava.org/wiki/Main_Page

- Accessing Facebook data
 - http://restfb.com/

- Making music
 - http://www.jfugue.org/
Courses?

- CSE non-majors
 - CSE 154: Web Programming
 - CSE 373: Data Structures and Algorithms
 - CSE 374: Programming Concepts and Tools (C/C++, Linux, ...)
 - CSE 131: Digital Photography
 - CSE 460: Animation Capstone (open to all majors)

- CSE majors
 - CSE 311: (Mathematical) Foundations of Computing
 - CSE 332: Data Abstractions (Data Structures and Algorithms)
 - CSE 331: Software Design and Implementation
 - CSE 341: Programming Languages
 - CSE 344: Intro to Data Management (and databases)
 - CSE 351: Hardware/Software Interface

- INFO, AMATH, DXARTS, ...
Weekly meetings

- Change – technologies for low-income regions
 - http://change.washington.edu/

- Dub – human-computer interaction and design
 - http://dub.washington.edu/
Computing & Jobs

- Computer occupations (15-1100)
- Engineers (17-2000)
- Life scientists (19-1000)
- Physical scientists (19-2000)
- Social scientists and related workers (19-3000)
- Mathematical science occupations (15-2000)

Data from the spreadsheet at http://www.bls.gov/emp/ind-occ-matrix/occupation.xlsx
Roles in Industry

- **Software Developer/Software Engineer**
 - Builds and designs software
 - Includes designing and engineering architecture of a software system as well as programming

- **Product Manager (PM)**
 - Designs and makes decisions regarding the overall product
 - Works with people across disciplines at the company
 - Role can be different at different companies

- **Site Reliability Engineer (SRE)**
 - Responsible for ensuring that systems and services are available and responsive

- **Test/QA**
 - Write and design tests of the product
Internships

- Various career fairs around campus.
- Start looking early!
- Cast a broad net and interview lots of places

For those just starting out
 - [Microsoft Explorer Program](#)
 - [Google Engineering Practicum](#)
What Do I Do?

- When I’m not teaching, I work at Sift Science, a startup in San Francisco, as a Software Developer

- Sift Science uses large scale machine learning to help online businesses detect fraud

- Small company (~100). Work closely with people in different disciplines across the company

- Full-stack, primarily focusing on front-end development
 - Frontend uses React, Facebook’s javascript framework
 - Backend uses Java!
Small vs Big Company?

- **Small Company**
 - Lots of autonomy and impact within the company
 - Often move quickly
 - Breadth – get to work on many projects and with many types of people

- **Large company**
 - Large data sets, impact many users
 - Lots of support and infrastructure to do your job well
 - Depth – get to focus on specific areas of a project