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CSE 143, Spring 2016 
Programming Assignment #1: LetterInventory (30 points) 

Due Thursday, June 30, 2016, 11:30 PM 

In this programming assignment you will practice using arrays and classes.  You will turn in a file named 
LetterInventory.java online using the turnin link on the Homework section of the course web site.  

Program Description: 
In this assignment, you will implement a class called LetterInventory that can be used to keep track of an 
inventory of letters of the alphabet.  The constructor for the class takes a String and computes how many of 
each letter are in the String.  This is the information the object keeps track of (how many a’s, how many b’s, 
etc).  It ignores the case of the letters and ignores anything that is not an alphabetic character (e.g., it ignores 
punctuation characters, digits and anything else that is not a letter). 

Your class should have the following public methods: 
public LetterInventory(String data) 

Constructs an inventory (a count) of the alphabetic letters in the given string, ignoring the case of letters and ignoring any 
non-alphabetic characters. 
 

public int get(char letter) 
 

Returns a count of how many of this letter are in the inventory.  Letter might be lowercase or uppercase (your method 
shouldn’t care).  If a non-alphabetic character is passed, your method should throw an IllegalArgumentException. 
 

public void set(char letter, int value) 
 

Sets the count for the given letter to the given value.  Letter might be lowercase or uppercase.  If a non-
alphabetic character is passed or if value is negative, your method should throw an IllegalArgumentException 
 

public int size() 
 

Returns the sum of all of the counts in this inventory.  This operation should be “fast” in that it should store the size rather 
than having to compute it each time this method is called. 
 

public boolean isEmpty() 
 

Returns true if this inventory is empty (all counts are 0).  This operation should be fast in that it should not need to 
examine each of the 26 counts when it is called. 
 

public String toString() 
 

Returns a String representation of the inventory with the letters all in lowercase and in sorted order and surrounded by 
square brackets.  The number of occurrences of each letter should match its count in the inventory.  For example, an 
inventory of 4 a’s, 1 b, 1 l and 1 m would be represented as “[aaaablm]”. 
 

public LetterInventory add(LetterInventory other) 
 

Constructs and returns a new LetterInventory object that represents the sum of this letter inventory and the other 
given LetterInventory.  The counts for each letter should be added together.  The two LetterInventory objects being added 
together (this and other) should not be changed by this method. 
 

public LetterInventory subtract(LetterInventory other) 
 

Constructs and returns a new LetterInventory object that represents the result of subtracting the other inventory from this 
inventory (i.e., subtracting the counts in the other inventory from this object’s counts).  If any resulting count would be 
negative, your method should return null.  The two LetterInventory objects being subtracted (this and other) should not be 
changed by this method. 
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Below is an example of how the add method would be called. 

LetterInventory inventory1 = new LetterInventory("George W. Bush"); 
LetterInventory inventory2 = new LetterInventory("Hillary Clinton"); 
LetterInventory sum = inventory1.add(inventory2); 

The first inventory would correspond to [beegghorsuw], the second would correspond to [achiilllnnorty] and the 
third would correspond to [abceegghhiilllnnoorrstuwy]. 

You should implement this class with an array of 26 counters (one for each letter) along with any other data 
fields you find that you need.  Remember, though, that we want to minimize the number of data fields when 
possible.  You might be tempted to implement the add method by calling the toString method but you are not 
allowed to use that approach because it would be inefficient for inventories with large character counts.  You 
should introduce a class constant for the value 26 to add to readability. 

You will need to know certain things about the properties of letters and type char.  There is a section about type 
char in chapter 4 of the textbook.  One of the most important ideas is that the values of type char have 
corresponding integer values.  There is a character with value 0, a character with value 1, a character with value 
2 and so on.  You can compare different values of type char using less-than and greater-than tests, as in: 

if (ch >= 'a') { 
    ... 
} 

All of the lowercase letters appear grouped together in type char ('a' is followed by 'b' followed by 'c', and so on) 
and all of the uppercase letters appear grouped together in type char ('A' followed by 'B' followed by 'C' and so 
on).  Because of this, you can compute a letter’s displacement (or distance) from the letter 'a' with an expression 
like the following (this expression assumes the variable letter is of type char and stores a lowercase letter): 

letter - 'a' 

Going in the other direction, if you know a character’s integer equivalent, you can cast the result to char to get 
the character.  For example, suppose that you want to get the letter that is 8 away from 'a'.  You could say: 

char result = (char) ('a' + 8); 

This assigns the variable result the value 'i'. 

As in these examples, you should write your code in terms of displacement from a fixed letter like 'a' rather than 
including the specific integer value of a character like 'a'. 

You probably want to look at the String and Character classes for useful methods (e.g., there is 
a toLowerCase method in each).  You will have to pay attention to whether a method is static or not. The String 
methods are mostly instance methods because Strings are objects.  The Character methods are all static because 
char is a primitive type.  For example, assuming you have a variable called s that is a String, you can turn it to 
lowercase by saying: 

s = s.toLowerCase(); 

This is a call on an instance method where you put the name of the object first.  But char values are not objects 
and the toLowerCase method in the Character class is a static method.  So assuming you have a variable 
called ch that is of type char, you'd turn it to lowercase by saying: 

ch = Character.toLowerCase(ch); 
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The ArrayIntList class from lecture provides a good example of the kind of documentation we expect you to 
include.  You do not have to use the pre/post format, but you must include the equivalent information, including 
exactly what type of exception is thrown if a precondition is violated.  Remember to mention all important 
behavior that a client would want to know about. 

Development Strategy: 
One of the most important techniques for software professionals is to develop code in stages rather than trying 
to write it all at once (the technical term is iterative enhancement or stepwise refinement).  It is also important to 
be able to test the correctness of your solution at each different stage. 

We have noticed that many 143 students do not develop their code in stages and do not have a good idea of how 
to test their solutions.  As a result, for this assignment we will provide you with a development strategy and 
some testing code.  We aren’t going to provide exhaustive testing code, but we’ll give you some good examples 
of the kind of testing code we want you to write. 

We are suggesting that you develop the program in three stages: 

1.      In this stage we want to test constructing a LetterInventory and examining it’s contents.  So the methods 
we will implement are the constructor, the size method, the isEmpty method, the get method, and 
the toString method.  Even within this stage you can develop the methods slowly.  First do the 
constructor and size methods.  Then add the isEmpty method.  Then add the get method.  Then add 
the toString method.  The testing program will test them in this order, so it will be possible to implement 
them one at a time. 

2.      It this stage we want to add the set method to the class that allows the client to change the number of 
occurrences of an individual letter.  The testing program will verify that other methods work properly in 
conjunction with set (the get, isEmpty, size, and toString methods). 

3.      In this stage we want to include the add and subtract methods.  You should write the add method first 
and make sure it works.  The testing program first tests add, so don’t worry that the fact that the tests on 
subtract fail initially. 

We will be providing testing code for each of these three stages and for this program only you are allowed to 
discuss how to write testing code with other students.  Keep in mind that the tests are not guaranteed to be 
exhaustive.  They are meant to be examples of the kinds of tests you should perform. 

Style Guidelines and Grading: 
Properly encapsulate your objects by making any data fields in your class private. Avoid unnecessary 
fields; use fields to store important data of your objects but not to store temporary values only used in one place.  
Fields should always be initialized inside a constructor or method, never at declaration. 
You should follow good general Java style guidelines such as: appropriately using control structures like loops 
and if/else statements; avoiding redundancy using techniques such as methods, loops, and factoring common 
code out of if/else statements; properly using indentation, good variable names, and types; and not having 
any lines of code longer than 100 characters in length.   
You should comment your code with a heading at the top of your class with your name, section, and a 
description of the overall program.  Also place a comment heading on top of each method, and a comment on 
any complex sections of your code.  Comment headings should use descriptive complete sentences and should 
be written in your own words, explaining each method's behavior, parameters, return values, and assumptions 
made by your code, as appropriate. 
Unless otherwise specified, your solution should use only material taught in class and in the book chapters 
covered so far. 


