Building Java Programs

Interfaces
reading: 9.5 - 9.6, 16.4

&l sliwl wiw) vl @ of o mi
JLIRIRI T ." ol ol ol ol
o viuewe ol nis

’

Shapes

e Consider the task of writing classes to represent 2D shapes
such as Circle, Rectangle, and Triangle.

e Certain operations are common to all shapes:
perimeter: distance around the outside of the shape
area: amount of 2D space occupied by the shape

Every shape has these, but each computes them differently.

—

// .
Shape area and perimeter

e Circle (as defined by radius r):
area =lonr?
perimeter =2nr

» Rectangle (as defined by width w and height h):

W
area = wh
perimeter = 2w + 2h -
* Triangle (as defined by side lengths a, b, and c)
area =ls(s-a)(c-D)(s-c}) b

wheres =2 (a + b + ¢) a
perimeter =a+b+c¢C

/ =
Common behavior

e Suppose we have 3 classes Circle, Rectangle, Triangle.
Each has the methods perimeter and area.

» We'd like our client code to be able to treat different kinds
of shapes in the same way:
Write a method that prints any shape's area and perimeter.
Create an array to hold a mixture of the various shape objects.

Write a method that could return a rectangle, a circle, a
triangle, or any other kind of shape.

Make a DrawingPanel display many shapes on screen.

Interfaces (9.5)

* interface: A list of methods that a class can promise to
implement.

Inheritance gives you an is-a relationship and code sharing.
« A Lawyer can be treated as an Employee and inherits its code.

Interfaces give you an is-a relationship without code sharing.
« A Rectangle oObject can be treated as a shape but inherits no code.

Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

- "I'm 'certified' as a Shape, because I implement the Shape
interface.

This assures you I know how to compute my area and perimeter."”

Interface syntax

public interface name ({
public type name (type name, ..., type name);
public type name (type name, ..., type name);

public type name (type name, ..., type name);

Example:
Dbl evinte pbacevwie hved e
public i1nt getSpeed() ;
publve vord set Drrectron (intidireobyon) >

Shape interface

// Describes features common to all shapes.

public interface Shape {
publacidoublelareait);

public double perimeter(); cinterface»
} Shape
areaf)
A petimeter()
Saved as Shape.java o
Circle Rectangle Triangle
radius width, height ab,c
Circle{radius) Rectanglefw,h) Triangle(a, b, ¢}
area() areal) areal)
perimeter() perimeter)) perimeter()

» abstract method: A header without an implementation.

The actual bodies are not specified, because we want to allow
each class to implement the behavior in its own way.

—

/ . .
Implementing an interface

public class name implements interface

}

* A class can declare that it "implements" an interface.
The class must contain each method in that interface.

public class Bicycle implements Vehicle ({

}

(Otherwise it will fail to compile.)
B B e B I e e s Ve i o va i Mo sV s o Wit Doa e iR A
override abstract method area () in Shape

public class Banana implements Shape {

N

/ AR

Interface requirements

public class Banana implements Shape {
// haha, no methods! pwned

o If we write a class that claims to be a shape but doesn't
implement area and perimeter methods, it will not
compile.

T N R o il i e N e e eV A e M il s o i P e S e
override abstract method area () in Shape

public class Banana implements Shape ({

A

10

—

Interfaces + polymorphism

e Interfaces benefit the client code author the most.

They allow polymorphism.
(the same code can work with different types of objects)

public static void printInfo (Shape s) {

Sy e temvolEvprintbn G e sshapemaiidureas

WM SR e s ye Y s an auwE Ml e W s e e e e A

Shictwsniiieibie ohanli sl el e et an i i s e sl sy s e e
(

Systemioubiprintin ()

B e e e T e e

T ey evispyrsnawaiipa ancehes: a2l
ShssE M EA RN B ol N & el i

BN by A MW Ve o ol A

/-/

Linked vs. array lists

* We have implemented two collection classes:
* ArrayIntList

index

0

value

42

17

& Tk ecd IR S

data | next |
front ——| 42

data | next
-3

data | next
17

data | next
9

» They have similar behavior, implemented in different ways.
We should be able to treat them the same way in client code.

12

Redundant client code

bl e e We i Lot BN R o B A e
public static void main(String[] args) {

ArrayIntList listl = new ArrayIntList();
listl.add(18) ;
listl.add(27) ;
listl.add(93) ;
System.out.println(listl) ;
listl.remove(l);
System.out.println(listl) ;

LinkedIntlList 1list?2 = new LinkedIntList();
list2.add (18) ;

list2.add (27) ;

list2.add (93) ;

System.out.println(list2) ;
list2.remove(l) ;
System.out.println(list2);

13

/< —

/ &
An IntList interface

// Represents a list of integers.
pablaseynte e baae s fhgiat
public void add(int value) ;
B e e e e A e R e e I e
public int get (int index) ;
public int indexOf (int value);
public boolean i1sEmpty () ;
ShbY SN I B bW Ve R o S A e pRe [
Dubivievvomdnse b e scav e e
JSAYY S s g b N A T O Y

public class ArrayIntlList implements IntList { ...
public class LinkedIntList implements IntList { ...

14

/———-""

Client code w/ interface

public class ListClient {
b e AN S R e e M (e s M e e e e U e i R e T e
IntList 1listl = new ArraylIntlList () ;
process (listl) ;

Tt lastild st 2v—mewiTankedPnbiaisi)
process (list2) ;

}

pubiiiig i statveivord processtinthiast ast) |
I
Yaetvaddit 27
list.add(93);
System.out.println(list);
list.remove (1) ;
Sy Shemiprt e Rt G aafare

15

—

e

ADTs as interfaces (11.1)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework uses interfaces to describe
ADTs:

Coltleebron Peagus s Man e eis et

* An ADT can be implemented in multiple ways by classes:

A e eael i e implement List
HashSet and TreeSet implement set
LinkedList, ArrayDeque, etc. implement Queue

« They messed up on Stack; there's no stack interface, just a class.

16

—

% Using ADT interfaces

When using Java's built-in collection classes:

» It is considered good practice to always declare collection
variables using the corresponding ADT interface type:

List<String> list = new ArrayList<String>();

» Methods that accept a collection as a parameter should also
declare the parameter using the ADT interface type:

pubilmevrordvs b el staSE EIng e

17

Why use ADTs?

* Why would we want more than one kind of list, queue,
etc.?

* Answer: Each implementation is more efficient at certain
tasks.

ArrayList is faster for adding/removing at the end;

LinkedList is faster for adding/removing at the front/middle.

Etc.

You choose the optimal implementation for your task, and if
the rest of your code is written to use the ADT interfaces, it
will work.

18

