Building Java Programs

Interfaces reading: 9.5 - 9.6, 16.4

Shapes

- Consider the task of writing classes to represent 2D shapes such as Circle, Rectangle, and Triangle.
- Certain operations are common to all shapes:
 - perimeter: distance around the outside of the shape
 - area: amount of 2D space occupied by the shape
 - Every shape has these, but each computes them differently.

Shape area and perimeter

• Circle (as defined by radius r): area = $\frac{1}{2}\pi r^2$ perimeter = $2\pi r$

• Rectangle (as defined by width *w* and height *h*): area = w hperimeter = 2w + 2hh

• Triangle (as defined by side lengths *a*, *b*, and *c*) area = $\sqrt{(s(s - a)(s - b)(s - c))}$ where $s = \frac{1}{2}(a + b + c)$ a perimeter = a + b + c

Common behavior

- Suppose we have 3 classes Circle, Rectangle, Triangle.
 - Each has the methods perimeter and area.

- We'd like our client code to be able to treat different kinds of shapes in the same way:
 - Write a method that prints any shape's area and perimeter.
 - Create an array to hold a mixture of the various shape objects.
 - Write a method that could return a rectangle, a circle, a triangle, or any other kind of shape.
 - Make a DrawingPanel display many shapes on screen.

Interfaces (9.5)

- interface: A list of methods that a class can promise to implement.
 - Inheritance gives you an is-a relationship and code sharing.
 - A Lawyer can be treated as an Employee and inherits its code.
 - Interfaces give you an is-a relationship *without* code sharing.
 - A Rectangle object can be treated as a Shape but inherits no code.
 - Analogous to non-programming idea of roles or certifications:
 - "I'm certified as a CPA accountant. This assures you I know how to do taxes, audits, and consulting."
 - "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

Interface syntax

```
public interface name {
    public type name(type name, ..., type name);
    public type name(type name, ..., type name);
    ...
    public type name(type name, ..., type name);
}
```

```
Example:
public interface Vehicle {
   public int getSpeed();
   public void setDirection(int direction);
}
```

Shape interface

abstract method: A header without an implementation.

 The actual bodies are not specified, because we want to allow each class to implement the behavior in its own way.

Implementing an interface

public class name implements interface {
 ...
}

- A class can declare that it "implements" an interface.
 - The class must contain each method in that interface.

```
public class Bicycle implements Vehicle {
    ...
}
```

(Otherwise it will fail to compile.)

~

```
Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape
public class Banana implements Shape {
```

Interface requirements

public class Banana implements Shape {
 // haha, no methods! pwned
}

 If we write a class that claims to be a Shape but doesn't implement area and perimeter methods, it will not compile.

Banana.java:1: Banana is not abstract and does not override abstract method area() in Shape public class Banana implements Shape {

^

Interfaces + polymorphism

- Interfaces benefit the client code author the most.
 - They allow polymorphism. (the same code can work with different types of objects)

```
public static void printInfo(Shape s) {
    System.out.println("The shape: " + s);
    System.out.println("area : " + s.area());
    System.out.println("perim: " + s.perimeter());
    System.out.println();
}
```

```
...
Circle circ = new Circle(12.0);
Triangle tri = new Triangle(5, 12, 13);
printInfo(circ);
printInfo(tri);
```

Linked vs. array lists

- We have implemented two collection classes:
 - ArrayIntList

index	0	1	2	3
value	42	-3	17	9

• LinkedIntList

They have similar behavior, implemented in different ways.
 We should be able to treat them the same way in client code.

Redundant client code

```
public class ListClient {
    public static void main(String[] args) {
        ArrayIntList list1 = new ArrayIntList();
        list1.add(18);
        list1.add(27);
        list1.add(93);
        System.out.println(list1);
        list1.remove(1);
        System.out.println(list1);
        LinkedIntList list2 = new LinkedIntList();
        list2.add(18);
        list2.add(27);
        list2.add(93);
        System.out.println(list2);
        list2.remove(1);
        System.out.println(list2);
```

}

An IntList interface

// Represents a list of integers.

public interface IntList {
 public void add(int value);
 public void add(int index, int value);
 public int get(int index);
 public int indexOf(int value);
 public boolean isEmpty();
 public int remove(int index);
 public void set(int index, int value);
 public int size();
}

```
public class ArrayIntList implements IntList { ...
public class LinkedIntList implements IntList { ...
```

Client code w/ interface

```
public class ListClient {
    public static void main(String[] args) {
        IntList list1 = new ArrayIntList();
        process(list1);
        IntList list2 = new LinkedIntList();
        process(list2);
    }
    public static void process(IntList list) {
        list.add(18);
        list.add(27);
        list.add(93);
        System.out.println(list);
        list.remove(1);
        System.out.println(list);
```

ADTs as interfaces (11.1)

- abstract data type (ADT): A specification of a collection of data and the operations that can be performed on it.
 - Describes what a collection does, not how it does it.
- Java's collection framework uses interfaces to describe ADTs:
 - Collection, Deque, List, Map, Queue, Set
- An ADT can be implemented in multiple ways by classes:
 - ArrayList **and** LinkedList
 - HashSet and TreeSet
 - LinkedList, ArrayDeque, etc.

implement List
implement Set
implement Queue

• They messed up on Stack; there's no Stack interface, just a class.

Using ADT interfaces

When using Java's built-in collection classes:

 It is considered good practice to always declare collection variables using the corresponding ADT interface type:

```
List<String> list = new ArrayList<String>();
```

 Methods that accept a collection as a parameter should also declare the parameter using the ADT interface type:

```
public void stutter(List<String> list) {
    ...
```

Why use ADTs?

- Why would we want more than one kind of list, queue, etc.?
- Answer: Each implementation is more efficient at certain tasks.
 - ArrayList is faster for adding/removing at the end; LinkedList is faster for adding/removing at the front/middle. Etc.
 - You choose the optimal implementation for your task, and if the rest of your code is written to use the ADT interfaces, it will work.