
Building Java Programs

Priority Queues, Huffman Encoding

2

Prioritization problems
 ER scheduling: You are in charge of scheduling patients for

treatment in the ER. A gunshot victim should probably get treatment
sooner than that one guy with a sore neck, regardless of arrival
time. How do we always choose the most urgent case when new
patients continue to arrive?

 print jobs: The CSE lab printers constantly accept and complete
jobs from all over the building. Suppose we want them to print
faculty jobs before staff before student jobs, and grad students
before undergraduate students, etc.?

 What would be the runtime of solutions to these problems using the
data structures we know (list, sorted list, map, set, BST, etc.)?

3

Inefficient structures
 list : store jobs in a list; remove min/max by searching (O(N))

 problem: expensive to search

 sorted list : store in sorted list; binary search it in O(log N) time

 problem: expensive to add/remove (O(N))

 binary search tree : store in BST, go right for max in O(log N)

 problem: tree becomes unbalanced

4

Priority queue ADT
 priority queue: a collection of ordered elements that provides fast

access to the minimum (or maximum) element

 priority queue operations:

 add adds in order; O(log N) worst

 peek returns minimum value; O(1) always

 remove removes/returns minimum value; O(log N) worst

 isEmpty,
clear,
size,
iterator O(1) always

5

Java's PriorityQueue class

public class PriorityQueue<E> implements Queue<E>

Queue<String> pq = new PriorityQueue<String>();

pq.add(“Adam");

pq.add(“Allison");

...

Method/Constructor Description Runtime

PriorityQueue<E>() constructs new empty queue O(1)

add(E value) adds value in sorted order O(log N)

clear() removes all elements O(1)

iterator() returns iterator over elements O(1)

peek() returns minimum element O(1)

remove() removes/returns min element O(log N)

size() number of elements in queue O(1)

6

Inside a priority queue
 Usually implemented as a heap, a kind of binary tree.

 Instead of sorted left right, it's sorted top bottom

 guarantee: each child is greater (lower priority) than its ancestors

 add/remove causes elements to "bubble" up/down the tree

 (take CSE 332 or 373 to learn about implementing heaps!)

906040

8020

10

50 99

85

65

7

Exercise: Fire the TAs
 We have decided that novice Tas should all be fired.

 Write a class TAManager that reads a list of TAs from a file.

 Find all with 2 quarters experience, and replace them.

 Print the final list of TAs to the console, sorted by experience.

 Input format:

name quarters Connor 3

name quarters Roee 2

name quarters Molly 1

8

Priority queue ordering
 For a priority queue to work, elements must have an ordering

 in Java, this means implementing the Comparable interface

 Reminder:

public class Foo implements Comparable<Foo> {

…

public int compareTo(Foo other) {

// Return positive, zero, or negative integer

}

}

9

Homework 8
(Huffman Coding)

10

File compression
 compression: Process of encoding information in fewer bits.

 But isn't disk space cheap?

 Compression applies to many things:

 store photos without exhausting disk space

 reduce the size of an e-mail attachment

 make web pages smaller so they load faster

 reduce media sizes (MP3, DVD, Blu-Ray)

 make voice calls over a low-bandwidth connection (cell, Skype)

 Common compression programs:

 WinZip or WinRAR for Windows

 Stuffit Expander for Mac

11

ASCII encoding
 ASCII: Mapping from characters to integers (binary bits).

 Maps every possible character to a number ('A' 65)

 uses one byte (8 bits) for each character

 most text files on your computer are in ASCII format

Char ASCII value ASCII (binary)

' ' 32 00100000

'a' 97 01100001

'b' 98 01100010

'c' 99 01100011

'e' 101 01100101

'z' 122 01111010

12

Huffman encoding
 Huffman encoding: Uses variable lengths for different characters

to take advantage of their relative frequencies.

 Some characters occur more often than others.
If those characters use < 8 bits each, the file will be smaller.

 Other characters need > 8, but that's OK; they're rare.

Char ASCII value ASCII (binary) Hypothetical Huffman

' ' 32 00100000 10

'a' 97 01100001 0001

'b' 98 01100010 01110100

'c' 99 01100011 001100

'e' 101 01100101 1100

'z' 122 01111010 00100011110

13

Huffman's algorithm
 The idea: Create a "Huffman Tree"

that will tell us a good binary
representation for each character.

 Left means 0, right means 1.

 example: 'b' is 10

 More frequent characters will
be "higher" in the tree
(have a shorter binary value).

 To build this tree, we must do a few steps first:

 Count occurrences of each unique character in the file.

 Use a priority queue to order them from least to most frequent.

14

Huffman compression
1. Count the occurrences of each character in file

{' '=2, 'a'=3, 'b'=3, 'c'=1, EOF=1}

2. Place characters and counts into priority queue

3. Use priority queue to create Huffman tree

4. Traverse tree to find (char binary) map

{' '=00, 'a'=11, 'b'=10, 'c'=010, EOF=011}

5. For each char in file, convert to compressed binary version

11 10 00 11 10 00 010 1 1 10 011 00

15

1) Count characters
 step 1: count occurrences of characters into a map

 example input file contents:

ab ab cab

counts array:

 (in HW8, we do this part for you)

byte 1 2 3 4 5 6 7 8 9

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b'

ASCII 97 98 32 97 98 32 99 97 98

binary 01100001 01100010 00100000 01100001 01100010 00100000 01100011 01100001 01100010

16

2) Create priority queue
 step 2: place characters and counts into a priority queue

 store a single character and its count as a Huffman node object

 the priority queue will organize them into ascending order

17

3) Build Huffman tree
 step 2: create "Huffman tree" from the node counts

algorithm:

 Put all node counts into a priority queue.

 while P.Q. size > 1:

 Remove two rarest characters.

 Combine into a single node with these two as its children.

18

Build tree example

19

4) Tree to binary encodings
 The Huffman tree tells you the binary encodings to use.

 left means 0, right means 1

 example: 'b' is 10

 What are the binary
encodings of:

EOF,
' ',
'c',
'a'?

 What is the relationship between tree branch height, binary
representation length, character frequency, etc.?

20

5) compress the actual file
 Based on the preceding tree, we have the following encodings:

{' '=00, 'a'=11, 'b'=10, 'c'=010, EOF=011}

 Using this map, we can encode the file into a shorter binary
representation. The text ab ab cab would be encoded as:

 Overall: 1110001110000101110011, (22 bits, ~3 bytes)

 Encode.java does this for us using our codes file.

 How would we go back in the opposite direction (decompress)?

char 'a' 'b' ' ' 'a' 'b' ' ' 'c' 'a' 'b' EOF

binary 11 10 00 11 10 00 010 11 10 011

byte 1 2 3

char a b a b c a b EOF

binary 11 10 00 11 10 00 010 1 1 10 011 00

21

Decompressing
How do we decompress a file of Huffman-compressed bits?

 useful "prefix property"

 No encoding A is the prefix of another encoding B

 I.e. never will have x 011 and y 011100110

 the algorithm:

 Read each bit one at a time from the input.

 If the bit is 0, go left in the tree; if it is 1, go right.

 If you reach a leaf node, output the character at that leaf and go back
to the tree root.

22

Decompressing
 Use the tree to decompress a compressed file with these bits:

1011010001101011011

 Read each bit one at a time.

 If it is 0, go left; if 1, go right.

 If you reach a leaf, output the
character there and go back
to the tree root.

 Output:

bac aca

1011010001101011011

b a c _ a c a

23

Public methods to write
 public HuffmanTree(int[] counts)

 Given character frequencies for a file, create Huffman tree (Steps 2-3)

 public void write(PrintStream output)

 Write mappings between characters and binary to a .code file (Step 4)

 public HuffmanTree(Scanner input)

 Reconstruct the tree from a .code file

 public void decode(BitInputStream in, PrintStream out,

int eof)

 Use the Huffman tree to decode characters

24

Bit I/O streams
 Java's input/output streams read/write 1 byte (8 bits) at a time.

 We want to read/write one single bit at a time.

 BitInputStream: Reads one bit at a time from input.

 BitOutputStream: Writes one bit at a time to output.

public BitInputStream(String file) Creates stream to read bits from given file

public int readBit() Reads a single 1 or 0

public void close() Stops reading from the stream

public BitOutputStream(String file) Creates stream to write bits to given file

public void writeBit(int bit) Writes a single bit

public void close() Stops reading from the stream

