
CSE 143
Binary Search Trees

reading: 17.3 – 17.4

2

Binary search trees
 binary search tree ("BST"): a binary tree where each non-empty node R

has the following properties:

 elements of R's left subtree contain data "less than" R's data,

 elements of R's right subtree contain data "greater than" R's,

 R's left and right subtrees are also binary search trees.

 BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root
System.out.println(contains(42))

;

3

8

Adding to a BST
 Suppose we want to add new values to the BST below.

 Where should the value 14 be added?

 Where should 3 be added? 7?

 If the tree is empty, where
should a new value be added?

 What is the general algorithm?

1910

115

8

4

2 7

25

22

overall root

14

Change point, version 2
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static void change(Point thePoint) {

thePoint = new Point(3, 4);

}

// answer: (1, 2)

2y1xp

4y3x

15

Changing references
 If a method dereferences a variable (with .) and modifies the object it

refers to, that change will be seen by the caller.

public static void change(Point thePoint) {

thePoint.x = 3; // affects p

thePoint.setY(4); // affects p

 If a method reassigns a variable to refer to a new object, that change will
not affect the variable passed in by the caller.

public static void change(Point thePoint) {

thePoint = new Point(3, 4); // p unchanged

thePoint = null; // p unchanged

 What if we want to make the variable passed in become null?

16

Change point, version 3
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;

}

// answer: (1, 2)

2y1xp

4y3x

17

Change point, version 4
 What is the state of the object referred to by p after this code?

public static void main(String[] args) {

Point p = new Point(1, 2);

p = change(p);

System.out.println(p);

}

public static Point change(Point thePoint) {

thePoint = new Point(3, 4);

return thePoint;

}

// answer: (3, 4)

2y1xp

4y3x

18

x = change(x);
 If you want to write a method that can change the object that a variable

refers to, you must do three things:

1. pass in the original state of the object to the method

2. return the new (possibly changed) object from the method

3. re-assign the caller's variable to store the returned result

p = change(p); // in main

public static Point change(Point thePoint) {

thePoint = new Point(99, -1);

return thePoint;

 We call this general algorithmic pattern x = change(x);

 also seen with strings: s = s.toUpperCase();

20

Applying x = change(x)
 Methods that modify a tree should have the following pattern:

 input (parameter): old state of the node

 output (return): new state of the node

 In order to actually change the tree, you must reassign:

node = change(node, parameters);

node.left = change(node.left, parameters);

node.right = change(node.right, parameters);

overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return

