
CSE 143
read: 12.5

Lecture 17: recursive backtracking

3

Exercise: Permutations
 Write a method permute that accepts a string as a parameter and

outputs all possible rearrangements of the letters in that string. The
arrangements may be output in any order.

 Example:
permute("TEAM")

outputs the following
sequence of lines:

TEAM

TEMA

TAEM

TAME

TMEA

TMAE

ETAM

ETMA

EATM

EAMT

EMTA

EMAT

ATEM

ATME

AETM

AEMT

AMTE

AMET

MTEA

MTAE

META

MEAT

MATE

MAET

5

Decision tree
chosen available

T E A M

T E A M

T E A M

T E A M

T E A M

T A E M T M E A

E T A M

T E M A

T E M A

T M E A

...

T A E M

T A E M

T A M E

T A M E T M E A

T M A E

T M A E

7

Backtracking
 Useful to solve problems that require making decisions

 Each decision leads to new choices

 Some (but not all!) sequence(s) of choices will be a solution

 Insufficient information to make a thoughtful choice

 Systematically prune out infeasible solutions

9

Exercise: solve maze
 Write a method solveMaze that accepts a Maze and a starting

row/column as parameters and tries to find a path out of the maze
starting from that position.

 If you find a solution:

 Your code should stop exploring.

 You should mark the path out of the
maze on your way back out of the
recursion, using backtracking.

 (As you explore the maze, squares you set
as 'explored' will be printed with a dot,
and squares you 'mark' will display an X.)

10

Maze class
 Suppose we have a Maze class with these methods:

Method/Constructor Description

public Maze(String text) construct a given maze

public int getHeight(), getWidth() get maze dimensions

public boolean isExplored(int r, int c)

public void setExplored(int r, int c)
get/set whether you
have visited a location

public void isWall(int r, int c) whether given location
is blocked by a wall

public void mark(int r, int c)

public void isMarked(int r, int c)
whether given location
is marked in a path

public String toString() text display of maze

11

Decision tree
position (row 1, col 7)

choices (these never change)

(1, 6) (0, 7)

wall

(2, 7)

wall

(1, 8)

(1, 5) (0, 6)

wall

(2, 6)

wall

(1, 7)

visited

(1, 7)

visited

(0, 8)

wall

(2, 8) (1, 9)

wall

...
(1, 4) (0, 5)

wall

(2, 5) (1, 6)

visited

......

12

Recall: Backtracking
A general pseudo-code algorithm for backtracking problems:

Explore(choices):

 if there are no more choices to make: stop.

 else, for each available choice C:

 Choose C.

 Explore the remaining choices.

 Un-choose C, if necessary. (backtrack!)

