Adam Blank Lecture 16 Winter 2015 CSE 143: Computer Programming I/

Recursive Backtracking

WUY T UAVE NO FRIENDS, REASON #1734
UNIMPRERSIVE MINDBLOWING FACTS

DID YOU KNOW THAT

THE WORD “RECURSION’ CONTAWNG

THE WORD “RECURSION”

W /7SELF?
WHOIPOA.”
THATS AMAZ...

YoUu're AN
ASSHOLE.

Computer Programming Il

Solving Recursion Problems
m Figure out what the pieces of the problem are.
m What is the base case? (the smallest possible piece of the problem)

Solving Mazes m Solve one piece of the problem and recurse on the rest.

Words & Permutations paintbucket Review
m A piece of the problem is one surrounding set of squares
m The base case is we hit a non-white cell

m To solve one piece of the problem, we color the cell and go left,
right, up, and down

Solving a Maze p) Solving a Maze 3

Solving a maze is a lot like paintbucket. What is the difference?

1 public static boolean solveMaze(Point p) {
- R R 2 // We found a path to the goal!
1
Instead of filling everything in, we want to stop at dead ends! 3 if (p.isGoal()) {
. i 4 p.makeVisited(panel);
If you were in a maze, how would you solve it? 5 return true;
m Try a direction. 6 }
Every ti in a direction, d X on th d :
m Every time you go in a direction, draw an on the ground. 8 // If the point is a valid part of a path to the solution...
m If you hit a dead end, go back until you can go in another direction. 9 if (!p.is00B() && p.isPassage(panel)) {
10 p.makeVisited(panel); // Choose this point
This is recursive backtracking! u panel.sleep(120);
12 if (solveMaze(p.getLeft()) || // Try each direction
13 solveMaze(p.getRight()) || // until we get a
1 public boolean canSolveMaze(int x, int y) { 14 solveMaze(p.getAbove()) || // solution.
2 if (isGoal(x, y)) { 15 solveMaze(p.getBelow())) {
3 return true; 16 return true;
4 } 17 }
5 else if (inBounds(x, y) && isPassage(x, y)) { 18 panel.sleep(200);
6 return solveMaze(x + 1, y) || 19 p.makeDeadEnd (panel) ; // Undo the choice
7 solveMaze(x - 1, y) || 20
8 solveMaze(x, y + 1) || 21 return false;
9 solveMaze(x, y — 1); 22}
10 }
11 }

Recursive Backtracking 4

Definition (Recursive Backtracking)

Recursive Backtracking is an attempt to find solution(s) by building up
partial solutions and abandoning them if they don't work.

Recursive Backtracking Strategy
m If we found a solution, stop looking (e.g. return)
m Otherwise for each possible choice c. . .
m Make the choice ¢
m Recursively continue to make choices

= Un-make the choice ¢ (if we got back here, it means we need to
continue looking)

All Words Solution 6

1 String part =
2 private static void words(int length) {
3 String[] choices = {"a", "b", "c", "d"};

4 // The empty string is the only word of length 0

5 if (length == 0) {

6 System.out.println(part);

7 }

8 else {

9 // Try appending each possible choice to our partial word.
10 for (String choice : choices) {

11 part += choice; // Add the choice
12 words(length — 1); // Recurse on the rest
13 int size = part.length()

14 part = part.substring(0, size - 1); // Undo the choice
15 }

16 }

17 }

Permutations

How do we change words to only print out words that have each
character exactly once?

m The most important part is figuring out what the choices are.

m It can help to draw out a tree of choices

m Make sure to undo your choices after the recursive call.

m You will still always have a base case.

Words & Permutations 5

All Words

Find all length n strings made up of a's, b's, ¢'s, and d's.

words(2)

_— | e b ‘ N
words(1) words(1) words(1) words(1)

A DA N (A AN

a b c d a b c d a b c d a b c d
SN S NN S

aa ab ac ad ba bb be bd ca cb c cd da db

/

To do this, we build up partial solutions as follows:
(Assume there is a variable part that is initialized to "".)
m The only length O string is ""; so, part is a solution.
m Otherwise, the four choices are a, b, ¢, and d:
m To make the choice letter, we set part += letter.
m Then, we need to find all solutions with one fewer letter recursively.
m Now, we unmake the choice (to continue looking) by removing
letter from part.

Permutations Solution 7

Idea: When a solution becomes “bad” (it has multiple of the same
letter), stop trying that branch.

1 String part =
2 private static void permutations(int length) {
3 String[] choices = {"a", "b", "c", "d"};

4 // If we have a repeat letter, the solution is invalid.
5 if (hasRepeats(part)) {

6 return;

7 }

8 else if (length == 0) {

9 System.out.println(part);

10 }

11 else {

12 for (String choice : choices) {

13 part += choice;

14 permutations(length — 1);

15 int size = part.length()

16 part = part.substring(0, size - 1);
17 }

18 }

19 }

