CSE 154

Sorting

reading: 13.3, 13.4

\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.\[A-Z]{2,4}\b
Collections class

<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binarySearch(list, value)</code></td>
<td>returns the index of the given value in a sorted list (< 0 if not found)</td>
</tr>
<tr>
<td><code>copy(listTo, listFrom)</code></td>
<td>copies <code>listFrom</code>'s elements to <code>listTo</code></td>
</tr>
<tr>
<td><code>emptyList()</code>, <code>emptyMap()</code>, <code>emptySet()</code></td>
<td>returns a read-only collection of the given type that has no elements</td>
</tr>
<tr>
<td><code>fill(list, value)</code></td>
<td>sets every element in the list to have the given value</td>
</tr>
<tr>
<td><code>max(collection)</code>, <code>min(collection)</code></td>
<td>returns largest/smallest element</td>
</tr>
<tr>
<td><code>replaceAll(list, old, new)</code></td>
<td>replaces an element value with another</td>
</tr>
<tr>
<td><code>reverse(list)</code></td>
<td>reverses the order of a list's elements</td>
</tr>
<tr>
<td><code>shuffle(list)</code></td>
<td>arranges elements into a random order</td>
</tr>
<tr>
<td><code>sort(list)</code></td>
<td>arranges elements into ascending order</td>
</tr>
</tbody>
</table>
Sorting

- **sorting**: Rearranging the values in an array or collection into a specific order (usually into their "natural ordering").
 - one of the fundamental problems in computer science
 - can be solved in many ways:
 - there are many sorting algorithms
 - some are faster/slower than others
 - some use more/less memory than others
 - some work better with specific kinds of data
 - some can utilize multiple computers / processors, ...

- *comparison-based sorting*: determining order by comparing pairs of elements:
 - <, >, `compareTo`, ...
Sorting algorithms

- **bogo sort**: shuffle and pray
- **bubble sort**: swap adjacent pairs that are out of order
- **selection sort**: look for the smallest element, move to front
- **insertion sort**: build an increasingly large sorted front portion
- **merge sort**: recursively divide the array in half and sort it
- **heap sort**: place the values into a sorted tree structure
- **quick sort**: recursively partition array based on a middle value

Other specialized sorting algorithms:

- **bucket sort**: cluster elements into smaller groups, sort them
- **radix sort**: sort integers by last digit, then 2nd to last, then ...
- ...

Bogo sort

- **bogo sort**: Orders a list of values by repetitively shuffling them and checking if they are sorted.
 - name comes from the word "bogus"

The algorithm:
- Scan the list, seeing if it is sorted. If so, stop.
- Else, shuffle the values in the list and repeat.

- This sorting algorithm (obviously) has terrible performance!
 - What is its runtime?
Bogo sort code

// Places the elements of a into sorted order.
public static void bogoSort(int[] a) {
 while (!isSorted(a)) {
 shuffle(a);
 }
}

// Returns true if a's elements are in sorted order.
public static boolean isSorted(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 if (a[i] > a[i + 1]) {
 return false;
 }
 }
 return true;
}
Bogo sort code, cont'd.

// Shuffles an array of ints by randomly swapping each element with an element ahead of it in the array.
public static void shuffle(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // pick a random index in [i+1, a.length-1]
 int range = a.length - 1 - (i + 1) + 1;
 int j = (int) (Math.random() * range + (i + 1));
 swap(a, i, j);
 }
}

// Swaps a[i] with a[j].
public static void swap(int[] a, int i, int j) {
 if (i != j) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
}
// Rearranges the elements of a into sorted order using the selection sort algorithm.
public static void selectionSort(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 // find index of smallest remaining value
 int min = i;
 for (int j = i + 1; j < a.length; j++) {
 if (a[j] < a[min]) {
 min = j;
 }
 }
 // swap smallest value its proper place, a[i]
 swap(a, i, min);
 }
}
Merge sort

- **merge sort**: Repeatedly divides the data in half, sorts each half, and combines the sorted halves into a sorted whole.

 The algorithm:
 - Divide the list into two roughly equal halves.
 - Sort the left half.
 - Sort the right half.
 - Merge the two sorted halves into one sorted list.

- Often implemented recursively.
- An example of a "divide and conquer" algorithm.
 - Invented by John von Neumann in 1945
Merge sort example

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>22</td>
<td>18</td>
<td>12</td>
<td>-4</td>
<td>58</td>
<td>7</td>
<td>31</td>
<td>42</td>
</tr>
</tbody>
</table>

```
merge
```

```
split
```

```
merge
```
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
public static void merge(int[] result, int[] left, int[] right) {
 int i1 = 0; // index into left array
 int i2 = 0; // index into right array

 for (int i = 0; i < result.length; i++) {
 if (i2 >= right.length ||
 (i1 < left.length && left[i1] <= right[i2])) {
 result[i] = left[i1]; // take from left
 i1++;
 } else {
 result[i] = right[i2]; // take from right
 i2++;
 }
 }
}
Merge sort code

// Rearranges the elements of a into sorted order using
// the merge sort algorithm.
public static void mergeSort(int[] a) {
 // split array into two halves
 int[] left = Arrays.copyOfRange(a, 0, a.length/2);
 int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

 // sort the two halves
 ...

 // merge the sorted halves into a sorted whole
 merge(a, left, right);
}
Merge sort code 2

// Rearranges the elements of a into sorted order using
// the merge sort algorithm (recursive).
public static void mergeSort(int[] a) {
 if (a.length >= 2) {
 // split array into two halves
 int[] left = Arrays.copyOfRange(a, 0, a.length/2);
 int[] right = Arrays.copyOfRange(a, a.length/2, a.length);

 // sort the two halves
 mergeSort(left);
 mergeSort(right);

 // merge the sorted halves into a sorted whole
 merge(a, left, right);
 }
}