
Adam Blank Winter 2015Lecture 13

CSE143
Computer Programming II

CSE 143: Computer Programming II

Interfaces & Comparable

Outline

1 Understand How To Use Interfaces

2 Learn about the Comparable Interface

Interfaces 1

Interface
An interface specifies a group of behaviors and gives them a name.
Classes can choose to implement interfaces which require them to
implement all of the methods in the interface.

Interfaces answer the question:

“To be an X, which methods does another class need to have?”

IntList Interface 2

For example: To be a List, which methods does another class need to
have?

Lists have an add method
Lists have a remove method
Lists have a get method
Lists have a set method
Lists have a size method
. . .

Normally, we specify a method and its implementation. Java allows us to
just specify the header:

“public String toString();”

is a valid line of code.

Interface Syntax 3

To Specify An Interface

1 public interface IntList {
2 public void add(int value);
3 public int remove(int index);
4 public int get(int index);
5 public void set(int index, int element);
6 public int size();
7 public boolean isEmpty();
8 }

To Use An Interface
Edit the first line of a class (say ArrayIntList or LinkedIntList):

public class ArrayIntList implements IntList {...}
public class LinkedIntList implements IntList {...}

Also, make sure it actually has all the methods the interface is supposed
to have. . .



How do sort and TreeSet work? 4

How do sort and TreeSet KNOW the ordering?

If you were implementing sort for a type T, what would you need to be
able to do with T a and T b?

We would need to be able to COMPARE a and b

That’s just an interface! Java calls it “Comparable”.

Comparable
The Comparable interface allows us to tell Java how to sort a type of
object:

1 public interface Comparable<E> {
2 public int compareTo(E other);
3 }

This says, “to be Comparable, classes must define compareTo”.

Thinking about compareTo 5

Think about the following transformation when using compareTo:

this.compareTo(that) < 0
this - that < 0

this < that

This works if you replace < with =, >, !=, . . . :

Normal compareTo
a < b is to a.compareTo(b) < 0
a <= b is to a.compareTo(b) <= 0
a == b is to a.compareTo(b) == 0
a != b is to a.compareTo(b) != 0
a >= b is to a.compareTo(b) >= 0
a > b is to a.compareTo(b) > 0

Storing Multiple Choice Quizzes 6

The text files:
Each text file corresponds to answers for a multiple choice quiz.
Each line contains one answer.
For each quiz, answers.txt represents the correct answers.

MCQuiz Class
1 public class MCQuiz {
2 private String studentName;
3 private String quizName;
4 private List<String> correctAnswers;
5 private List<String> studentAnswers;
6
7 public MCQuiz(String filename) throws FileNotFoundException { ... }
8
9 public String getStudent() { ... }

10 public String getName() { ... }
11 public int numberCorrect() { ... }
12 }

We would like to do the two following tasks:
1 Print out the quizzes in worst-to-best order
2 Collect all quizzes of each particular student together and display

them (still from worst-to-best)

Printing The Quizzes in Order 7

Client Code to Print The Quizzes

1 List<MCQuiz> quizzes = createQuizzes(2);
2 // First, let’s get a sorted list of the quizzes
3 Collections.sort(quizzes);
4 for (MCQuiz quiz : quizzes) {
5 System.out.println(quiz);
6 }

This doesn’t work, because Java doesn’t know how to sort MCQuizzes.

Comparable
The Comparable interface allows us to tell Java how to sort a type of
object:

1 public interface Comparable<E> {
2 public int compareTo(E other);
3 }

This says, “to be Comparable, classes must define compareTo”.

MCQuiz: Defining compareTo 8

Attempt #1
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 return this.numberCorrect() − other.numberCorrect();
5 }

This doesn’t; work, because if we have a quiz where someone got 1/10
and another where someone else got 1/5, we treat them as the same.

Attempt #2
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 return (double)this.numberCorrect()/this.correctAnswers.size() −
5 (double)other.numberCorrect()/other.correctAnswers.size();
6 }

This won’t even compile! We need to return an int.

Comparable: Tricks #1 & #2 9

int Fields
If we have a field int x in our class, and we want to compare with it,
our code should look like:

1 public class Sample implements Comparable<Sample> {
2 public int compareTo(Sample other) {
3 return this.x − other.x;
4 }
5 }

Object Fields
If we have a field Thing x in our class, and we want to compare with it,
our code should look like:

1 public class Sample implements Comparable<Sample> {
2 public int compareTo(Sample other) {
3 return this.x.compareTo(other.x);
4 }
5 }

In other words, just use the existing compareTo on the field in the class!



MCQuiz: Defining compareTo 10

Attempt #3
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
5 Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
6 return thisPer.compareTo(otherPer);
7 }

This still doesn’t work, because it doesn’t take the names of the
students into account.
In particular, if two students both get 1/10 on a quiz, our compareTo
method says “it doesn’t matter which one goes first”.
Attempt #4

1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
5 Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
6 int result = thisPer.compareTo(otherPer);
7 if (result == 0) { result = this.studentName.compareTo(other.studentName); }
8 return result;
9 }

This still doesn’t work, but it’s not as clear why. Let’s try the second
task.

Grouping the Quizzes by Student 11

What data structure should we use to group the quizzes? A Map!
Map Question: “Which quizzes were taken by this student?”
Keys: Strings (the student names)
Values: Set<MCQuiz> (all the quizzes that student took).

1 List<MCQuiz> quizzes = createQuizzes(2);
2 Map<String, Set<MCQuiz>> quizzesByStudent = new TreeMap<>();
3
4 // We want to loop over all the quizzes, adding them one by one
5 for (MCQuiz quiz : quizzes) {
6 String name = quiz.getStudent();
7 if (!quizzesByStudent.containsKey(name)) {
8 quizzesByStudent.put(name, new TreeSet<MCQuiz>());
9 }

10 quizzesByStudent.get(name).add(quiz);
11 }
12
13 // Now, we want to print out the quizzes student by student:
14 for (String student : quizzesByStudent.keySet()) {
15 System.out.println(student + ": " + quizzesByStudent.get(student));
16 }

Grouping the Quizzes by Student 12

The output looks like this: OUTPUT
>> AdamBlank: [AdamBlank (quiz1): 1/11, AdamBlank (quiz0): 4/11]
>> BarbaraHarris: [BarbaraHarris (quiz1): 3/11, BarbaraHarris (quiz0): 4/11]
>> ChrisHill: [ChrisHill (quiz0): 3/11, ChrisHill (quiz1): 4/11]
>> JessicaHerna: [JessicaHernan (quiz1): 1/11, JessicaHernan (quiz0): 2/11]
>> TeresaHall: [TeresaHall (quiz0): 4/11]

Why does Teresa only have one quiz? She scored the same on both of
her quizzes and compareTo said they were the same!

Final Attempt
1 public class MCQuiz implements Comparable<MCQuiz> {
2 ...
3 public int compareTo(MCQuiz other) {
4 Double thisPer = (double)this.numberCorrect()/this.correctAnswers.size();
5 Double otherPer = (double)other.numberCorrect()/other.correctAnswers.size();
6 int result = thisPer.compareTo(otherPer);
7 if (result == 0) {
8 result = this.studentName.compareTo(other.studentName);
9 }

10 if (result == 0) {
11 result = this.quizName.compareTo(other.quizName);
12 }
13 return result;
14 }

Lesson: When you write compareTo, make sure that
a.compareTo(b) == 0 exactly when a.equals(b)

Some Interface/Comparable Tips 13

Understand multi-level structures

Use the most general interface as possible

When implementing compareTo, make sure to use all the fields that
make it different (to put another way: a.compareTo(b) == 0
exactly when a.equals(b))

Remember that inside classes, you can look at the fields of other
instances of that class


