
CSE 143
Lecture 11: Sets and Maps

reading: 11.2 - 11.3

2

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

 Provides a clean syntax for looping over the elements of a Set, List,
array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

 needed because sets have no indexes; can't get element i

3

Exercise
 Write a program to count the number of occurrences of each unique word

in a large text file (e.g. Moby Dick).

 Allow the user to type a word and report how many times that word appeared
in the book.

 Report all words that appeared in the book at least 500 times, in alphabetical
order.

 What collection is appropriate for this problem?

4

Maps (11.3)
 map: Holds a set of unique keys and a collection of values, where each key

is associated with one value.

 a.k.a. "dictionary", "associative array", "hash"

 basic map operations:

 put(key, value): Adds a
mapping from a key to
a value.

 get(key): Retrieves the
value mapped to the key.

 remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

5

Map implementation
 in Java, maps are represented by Map type in java.util

 Map is implemented by the HashMap and TreeMap classes

 HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

 TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

 LinkedHashMap: O(1) ; keys are stored in order of insertion

 A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

6

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

7

Using maps
 A map allows you to get from one half of a pair to the other.

 Remembers one piece of information about every index (key).

 Later, we can supply only the key and get back the related value:

Allows us to ask: What is Suzy's phone number?

Map

get("Suzy")

"206-685-2181"

Map

// key value

put("Suzy", "206-685-2181")

8

Maps and tallying
 a map can be thought of as generalization of a tallying array

 the "index" (key) doesn't have to be an int

 count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent

 count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

9

keySet and values
 keySet method returns a Set of all keys in the map

 can loop over the keys in a foreach loop

 can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Marty", 19);

ages.put("Geneva", 2); // ages.keySet() returns Set<String>

ages.put("Vicki", 57);

for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(name); // Marty -> 19

System.out.println(name + " -> " + age); // Vicki -> 57

}

 values method returns a collection of all values in the map

 can loop over the values in a foreach loop

 no easy way to get from a value to its associated key(s)

