
Adam Blank Winter 2015Lecture 11

CSE143
Computer Programming II

CSE 143: Computer Programming II

Grammars, Sets, and Maps

Outline

1 Languages and Grammars

2 Sets

3 Foreach Loops

4 Maps

Languages and Grammars 1

Definition (Formal Language)
A Formal Language is a set of words or symbols.

For example:

{1, 2, 3, 4, 5} is a language, and {hello, goodbye} is a language.

Definition (Grammar)
A Grammar is a set of rules that generates a particular language.

Grammars are used to:
generate strings, and to
check if strings are in the language

Backus-Naur Form (BNF) 2

Definition (Backus-Naur Form (BNF))
BNF is a syntax for describing language grammars in terms of
transformation rules, of the form:

⟨symbol⟩ ::= ⟨expression⟩ | ⟨expression⟩ | ... | ⟨expression⟩
BNF is made up of two types of symbols:

Terminals: Literals (symbols that are interpreted literally)
Non-terminals: A symbol describing how to generate other symbols
based on the rules of the grammar

An Example Grammar 3

Example Grammar⟨object⟩ := ⟨article⟩ ⟨thing⟩
⟨article⟩ := The | A | That | This

⟨thing⟩ := ball | index card | word | balloon

To generate <object>s from this grammar, we do the following steps:

1 Start at <object> and look at what to transform to:
<article> <thing>

2 For each non-terminal, look at its rule and choose an option.

Some <object>s in this grammar:
The ball
That index card
The balloon

Alice in Wonderland 4

Count the Number of Distinct Words in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Store the words in a collection and report the number of unique
words in the text file.
Allow the user to search it to see whether various words appear in
the text file.

What collection is appropriate for this problem?
We could use an ArrayList. . .

We’d really like a data structure that takes care of duplicates for us.

What is a Set? 5

Definition (Set)
A set is an unordered collection of unique values. You can do the
following with a set:

Add element to the set
Remove element from the set
Is element in the set?

How To Think About Sets
Think of a set as a bag with objects in it. You’re allowed to pull things
out of the bag, but someone might shake the bag and re-order the items.

Example Set

“very hello”

“goodbye”

“such strings”

“much wow”
Is “goodbye” in the set? true
Is “doge” in the set? false

Set Implementations 6

Set is an interface in java.util; implementations of that interface are:

HashSet
O(1) for all operations.
Does not maintain a useful ordering

TreeSet
O(log(n)) for all operations
Does maintain the elements in sorted order

Set Reference 7

Constructors
new HashSet<E>() Creates a new HashSet of type E that initially has no

elements

new HashSet<E>(collection) Creates a new HashSet of type E that initially has all
the elements in collection

new TreeSet<E>() Creates a new TreeSet of type E that initially has no
elements

new TreeSet<E>(collection) Creates a new TreeSet of type E that initially has all
the elements in collection

Methods
add(val) Adds val to the set
contains(val) Returns true if val is a member of the set
remove(val) Removes val from the set
clear() Removes all elements from the set
size() Returns the number of elements in the set
isEmpty() Returns true whenever the set contains no elements
toString() Returns a string representation of the set such as

[3, 42, -7, 15]
Set Reference

Looping Through Sets 8

How can we list all the elements of a set?
We can’t do a normal for loop, because there are no indexes
We also don’t know what is actually in the set. . .

Solution
The solution is a new type of loop called the foreach loop.

1 Set<Integer> set = new HashSet<Integer>();
2 set.add(5);
3 set.add(5);
4 set.add(5);
5 set.add(10);
6 set.add(12);
7 for (int i : set) {
8 System.out.println(i);
9 }
10 // The set remains unchanged.

OUTPUT
>> 10
>> 5
>> 12

foreach Loops 9

In general, foreach loops look like the following:
1 for (type var : collection) {
2 // do something with var
3 }

You can use them for many other collections like Lists.
You are not allowed to use them for Stacks or Queues.

Another Example of foreach Loops

List<String> list = new ArrayList<String>();
list.add("a");
list.add("a");
list.add("b");
list.add("d");
String everything = "";
for (String s : list) {

everything += s;
}
System.out.println(everything);

OUTPUT
>> aabd

Data Structure Performance 10

The following is the performance of various data structures at removing
duplicates from a large dictionary of words.

Data Structure Performance, Part 2 11

Note that despite it looking like HashSet and TreeSet have the same
runtime on the previous slide, they do not.

Alice in Wonderland, Take 2 12

Count the Number of Occurrences of Each Word in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Allow the user to type a word and report how many times that word
appeared in the book.
Report all words that appeared in the book at least 500 times, in
alphabetical order.

What collection is appropriate for this problem?
We could use something sort of like LetterInventory, but we don’t
know what the words are in advance. . .

We’d really like a data structure that relates tallies with words.

What is a Map? 13

Definition (Map)
A map is a data structure that relates keys and values. You can do the following with a map:

Ask what value a particular key maps to.
Change what value a particular key maps to.
Remove whatever the relation is for a given key.

How To Think About Maps
Maps are a lot like functions you’ve seen in math: f(x) = x2 maps 0 to 0, 2 to 4, . . .
Your keys are identifiers for values. Ex: social security numbers (maps SSN → person).
Safe-deposit boxes are another useful analogy. You get a literal key to access your
belongings. If you know what the key is, you can always get whatever you’re keeping safe.

Example Map
Keys Values

“very hello”

“goodbye”

“such strings”

“much wow”

7

12

10

8

How many characters is “much wow”? 8
What does “goodbye” map to? 7
What is the value for ”such strings”? 12

Map Implementations 14

Map is an interface in java.util; implementations of that interface are:

HashMap
O(1) for all operations.
Does not maintain a useful ordering of anything

TreeMap
O(log(n)) for all operations
Does maintain the keys in sorted order

Map Constructors & Type Parameters 15

Creating A Map
To create a map, you must specify two types:

What type are the keys?
What type are the values?

They can be the same, but they aren’t always.

Constructors

new HashMap<K,V>() Creates a new HashMap with keys of type K and
values of type V that initially has no elements

new TreeMap<K,V>() Creates a new TreeMap with keys of type K and
values of type V that initially has no elements

Map Reference 16

put(key,val) Adds a mapping from key to val; if key already maps to a
value, that mapping is replaced with val

get(key) Returns the value mapped to by the given key or null if
there is no such mapping in the map

containsKey(key) Returns true the map contains a mapping for key
remove(key) Removes any existing mapping for key from the map
clear() Removes all key/value pairs from the map
size() Returns the number of key/value pairs in the map
isEmpty() Returns true whenever the map contains no mappings
toString() Returns a string repr. of the map such as {d=90, a=60}
keySet() Returns a set of all keys in the map
values() Returns a collection of all values in the map
putAll(map) Adds all key/value pairs from the given map to this map
equals(map) Returns true if given map has the same mappings as this

Map Reference

Using A Map 17

Each map can answer one type of question. For example:
If the keys are phone numbers and the values are people
Then, the map can answer questions of the form:

“Who does this phone number belong to?”

1 Map<String,String> people = new HashMap<String,String>();
2 people.put("(206) 616−0034", "Adam’s Office");
3 people.get("(206) 616−0034"); // Returns "Adam’s Office"

The people map can only go in one direction. If we want the other
direction, we need a different map:
If the keys are people and the values are phone numbers
Then, the map can answer questions of the form:

“What is this person’s phone number?”

1 Map<String,String> phoneNumbers = new HashMap<String,String>();
2 phoneNumbers.put("Adam’s Office", "(206) 616−0034");
3 phoneNumbers.get("Adam’s Office"); // Returns "(206) 616−0034"

Using A Map 18

Earlier, we had an example where
keys were “phrases”
values were “# of chars in the key”

That map can answer the question:

“How many characters are in this string?”

1 Map<String,Integer> numChars = new HashMap<String,Integer>();
2 numChars.put("very hello", 10);
3 numChars.put("goodbye", 7);
4 numChars.put("such strings", 12);
5 numChars.put("much wow", 8);
6 numChars.get("much wow"); // Returns 8

keySet 19

There is no good way to go from a value to its key using a map. But
we can go from each key to the values:

1 Map<String, Double> ages = new TreeMap<String, Double>();
2 // These are all according to the internet...a very reliable source!
3 ages.put("Bigfoot", 100);
4 ages.put("Loch Ness Monster", 3.50);
5 ages.put("Chupacabra", 20); // ages.keySet() returns Set<String>
6 ages.put("Yeti", 40000);
7 for (String cryptid : ages.keySet()) {
8 double age = ages.get(cryptid);
9 System.out.println(cryptids + " −> " + age);
10 }

OUTPUT
>> Chupacabra -> 20
>> Loch Ness Monster -> 1500
>> Bigfoot -> 100
>> Yeti -> 40000

values 20

You can get a collection of all the values:

1 Map<String, Double> ages = new TreeMap<String, Double>();
2 // These are all according to the internet...a very reliable source!
3 ages.put("Bigfoot", 100);
4 ages.put("Loch Ness Monster", 3.50);
5 ages.put("Chupacabra", 20); // ages.keySet() returns Set<String>
6 ages.put("Yeti", 40000);
7
8 for (int age : ages.values()) {
9 System.out.println("One of the cryptids is aged " + age);
10 }

OUTPUT
>> One of the cryptids is aged 1500
>> One of the cryptids is aged 40000
>> One of the cryptids is aged 20
>> One of the cryptids is aged 100

Some Grammar/Set/Map Tips! 21

BNF is another recursive structure!

Sets and Maps are two more collections each with their own places

Sets are for storing data uniquely

Maps are for storing relationships between data; they only work in
one direction

foreach loops are a great tool for looping through collections

You should know the syntax for foreach loops and that Hash and
Tree are types of sets and maps

