
Adam Blank Winter 2015Lecture 8

CSE143
Computer Programming II

CSE 143: Computer Programming II

Linked Lists II

Outline

1 Understand why it is okay that the fields of ListNode are public

2 Get more familiarity with changing LinkedLists

3 Write more methods in the LinkedList class

4 Protecting Against NullPointerExceptions

ListNode Fields are public? 1

ListNode Class
1 public class ListNode {
2 public int data;
3 public ListNode next;
4 }

This is our ONLY exception to the “make all fields private” rule

Why is this okay?
Do we need them to be public?

Yes; we access data and next directly from LinkedIntList.
Will our client be using ListNode?

The point of LinkedIntList is to handle manipulation of
ListNodes for our client. Likely, they won’t touch ListNode.

A client of a LinkedList already knows that it’s made of ListNodes.
We don’t expect them to use ListNode, but it’s okay if they do.

A New LinkedList Constructor 2

New Constructor
Create a constructor

public LinkedIntList(int n)
which creates the following LinkedIntList, when given n:

1 2 3 . . . n

What kind of loop should we use?
A for loop, because we have numbers we want to put in the list.

What cases should we worry about?
We’re creating the list; so, there aren’t really “cases”.

A New LinkedList Constructor 3

First Attempt
1 public LinkedList(int n) {
2 /* Current State */

3

front

4 ListNode current = this.front;

5

front current

6 for (int i = 1; i <= n; i++) {
7 current = new ListNode(i);

8 1

front current

9 current = current.next;

10 1

front current

11 }
12 }

Remember, to edit a LinkedList, we MUST edit one of the following:
front, or
node.next (for some ListNode node)

In our code above, we edit current, which is neither.

A New LinkedList Constructor 4

Second Attempt
1 public LinkedList(int n) {
2 /* Current State */

3 if (n > 0) {

front

4 //n is at least 1...
5 this.front = new ListNode(1);

6 1

front

7 ListNode current = this.front;

8 1

front current

9 for (int i = 1; i <= n; i++) {
10 current.next = new ListNode(i);

11 1 2

front current

12 current = current.next;

13 1 2

front current

14 }
15 }
16 }

A New LinkedList Constructor: Another Solution 5

This other solution works by going backwards. Before, we were editing
the next fields. Here, we edit the front field instead:
Different Solution!

1 public LinkedList(int n) {
2 /* Current State */

3 for (int i = n; i > 0; i−−) {

front

4 ListNode next = this.front;

5

front next

6 this.front = new ListNode(i, next);

7 n

front next

8 } /* Second time through the loop (for demo)... */
9 //ListNode next = this.front;

10 n

front next

11 //this.front = new ListNode(i, next);

12 n-1 n

front next

13 }

Implementing addSorted 6

addSorted
Write a method addSorted(int value) that adds value to a sorted
LinkedIntList and keeps it sorted. For example, if we call
addSorted(10) on the following LinkedIntList,

-8 4 32 35

front

We would get:

-8 4 10 32 35

front

As always, we should approach this by considering the separate cases
(and then drawing pictures):

We’re supposed to insert at the front
We’re supposed to insert in the middle
We’re supposed to insert at the back

Case: Middle 7

An Incorrect Solution
1 public void addSorted(int value) { //Say value = 10...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop continues...

10 -8 4 32 35

front current

11 }

Uh Oh! We went too far! We needed the next field BEFORE us.

Case: Middle 8

Fixing the Problem
1 public void addSorted(int value) { //Say value = 10...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.next.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop STOPS now...

10 ListNode next = current.next;

11 -8 4 32 35

front current next

12 current.next = new ListNode(value, next);

13 -8 4 10 32 35

front current next

14 }

Does this cover all the cases?

Case: End 9

Adding At The End?
1 public void addSorted(int value) { //Say value = 40...

2 -8 4 32 35

front

3 ListNode current = this.front;

4 -8 4 32 35

front current

5 while (current.next.data < value) {
6 current = current.next;

7 -8 4 32 35

front current

8 }
9 ...the while loop continues...

10 -8 4 32 35

front current current.next

11 ...AND IT KEEPS ON GOING...
12 current.next.data→ NullPointerException!!!
13 }

We fell off the end of the LinkedList.
Idea: Make sure current.next exists.

Case: End 10

Adding At The End?
public void addSorted(int value) {

ListNode current = this.front;
/* If we are making a check for current.next, we must

* be sure that current is not null. */
while (current.next.data < value) {

/* Since we want to keep on going here,

* the check must be made in the while loop.
current = current.next;

}
}

A Fix?
public void addSorted(int value) {

ListNode current = this.front;
/* The extra check here is useless...we’ve already checked

* current.next by the time we get to it. */
while (current.next.data < value && current.next != null) {

current = current.next;
}

}

A Real Fix!
public void addSorted(int value) {

ListNode current = this.front;
while (current.next != null && current.next.data < value) {

current = current.next;
}

}

We fell off the end of the LinkedList

Case: Beginning 11

Our current code only sets current to a new ListNode. Importantly,
this never updates front; so, we lose the new node.

Adding At The Beginning?
1 public void addSorted(int value) { //Say value = −10...
2 -8 4 32 35

front

3 if (value < front.data) { −10 < −8→ true
4 ListNode next = front;

5 -8 4 32 35

front next

6 front = new ListNode(value, next);

7 -10 -8 4 32 35

front next

8 }
9 else {

10 ...
11 }
12 }

Have we covered all of our cases now?

Protecting Our Tests! 12

With LinkedList code, every time we make a test (if, while, etc.), we
need to make sure we’re protected. Our current code is:
Working Code?

1 public void addSorted(int value) {
2 if (value < front.data) {
3 ListNode next = front;
4 front = new ListNode(value, next);
5 }
6 else {
7 while (current.next != null && current.next.data < value) {
8 current = current.next;
9 }

10
11 ListNode next = current.next;
12 current.next = new ListNode(value, next);
13 }
14 }

We’re “protected” if we know we won’t get a NullPointerException
when trying the test. So, consider our tests:

value < front.data
current.next != null && current.next.data < value

So, Are We Protected?

Protecting Our Tests! 13

Nope! What happens if front == null? We try to get the value of
front.data, and get a NullPointerException. The fix:

Working Code!
1 public void addSorted(int value) {
2 if (front == null || value < front.data) {
3 ListNode next = front;
4 front = new ListNode(value, next);
5 }
6 else {
7 while (current.next != null && current.next.data < value) {
8 current = current.next;
9 }

10
11 ListNode next = current.next;
12 current.next = new ListNode(value, next);
13 }
14 }

Helpfully, this fix actually handles the empty list case correctly!

Some LinkedList Tips! 14

Make sure to try all the cases:
Empty List
Front of Non-empty List
Middle of Non-empty List
Back of Non-empty List

To Edit a LinkedList, the assignment must look like:
this.front = <something>;, or
node.next = <something>; (for some ListNode node in the list)

Protect All Of Your Conditionals! Make sure that nothing can
accidentally be null.

When protecting your conditionals, make sure the less complicated
check goes first.

