
CSE 143
Lecture 4: testing and complexity

reading: 13.1-13.2

http://www.alexsweet.co.uk/comics.php?comic=2

http://www.alexsweet.co.uk/comics.php?comic=2

2

Tips for testing
 You cannot test every possible input, parameter value, etc.

 Think of a limited set of tests likely to expose bugs.

 Think about boundary cases

 Positive; zero; negative numbers

 Right at the edge of an array or collection's size

 Think about empty cases and error cases

 0, -1, null; an empty list or array

 test behavior in combination

 Maybe add usually works, but fails after you call remove

 Make multiple calls; maybe size fails the second time only

3

Interfaces
 interface: A list of methods that a class can promise to implement.

 Inheritance gives you an is-a relationship and code sharing.

 A Lawyer can be treated as an Employee and inherits its code.

 Interfaces give you an is-a relationship without code sharing.

 A Rectangle object can be treated as a Shape but inherits no code.

 Always declare variables using the interface type.

List<String> list = new ArrayList<String>();

4

Runtime Efficiency (13.2)

 efficiency: measure of computing resources used by code.

 can be relative to speed (time), memory (space), etc.

 most commonly refers to run time

 Assume the following:

 Any single Java statement takes same amount of time to run.

 A method call's runtime is measured by the total of the statements inside the
method's body.

 A loop's runtime, if the loop repeats N times, is N times the runtime of the
statements in its body.

5

Efficiency examples
statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {

statement4;
}

for (int i = 1; i <= N; i++) {

statement5;
statement6;
statement7;

}

3

N

3N

4N + 3

6

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {

statement2;
statement3;
statement4;
statement5;

}

 How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

7

Algorithm growth rates (13.2)

 We measure runtime in proportion to the input data size, N.

 growth rate: Change in runtime as N changes.

 Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.

 Consider the runtime when N is extremely large .

 We ignore constants like 25 because they are tiny next to N.

 The highest-order term (N3) dominates the overall runtime.

 We say that this algorithm runs "on the order of" N3.

 or O(N3) for short ("Big-Oh of N cubed")

8

Complexity classes
 complexity class: A category of algorithm efficiency based on the

algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

9

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

10

Collection efficiency

Method ArrayList

add

add(index, value)

get

remove

set

size

 Efficiency of our ArrayIntList or Java's ArrayList:

Method ArrayList

add O(1)

add(index, value) O(N)

get O(1)

remove O(N)

set O(1)

size O(1)

11

Max subsequence sum
 Write a method maxSum to find the largest sum of any contiguous

subsequence in an array of integers.

 Easy for all positives: include the whole array.

 What if there are negatives?

 (Let's define the max to be 0 if the array is entirely negative.)

 Ideas for algorithms?

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

Largest sum: 10 + 15 + -2 + 22 = 45

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

12

Algorithm 1 pseudocode
maxSum(a):

max = 0.

for each starting index i:

for each ending index j:

sum = add the elements from a[i] to a[j].

if sum > max,

max = sum.

return max.

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

13

Algorithm 1 code
 What complexity class is this algorithm?

 O(N3). Takes a few seconds to process 2000 elements.

public static int maxSum1(int[] a) {

int max = 0;

for (int i = 0; i < a.length; i++) {

for (int j = i; j < a.length; j++) {

// sum = add the elements from a[i] to a[j].

int sum = 0;

for (int k = i; k <= j; k++) {

sum += a[k];

}

if (sum > max) {

max = sum;

}

}

}

return max;

}

14

Flaws in algorithm 1
 Observation: We are redundantly re-computing sums.

 For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

 Next we compute the sum between indexes 2 and 6:
a[2] + a[3] + a[4] + a[5] + a[6]

 We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

 Let's write an improved version that avoids this flaw.

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

15

Algorithm 2 code
 What complexity class is this algorithm?

 O(N2). Can process tens of thousands of elements per second.

public static int maxSum2(int[] a) {

int max = 0;

for (int i = 0; i < a.length; i++) {

int sum = 0;

for (int j = i; j < a.length; j++) {

sum += a[j];

if (sum > max) {

max = sum;

}

}

}

return max;

}

index 0 1 2 3 4 5 6 7 8

value 2 1 -4 10 15 -2 22 -8 5

16

A clever solution
 Claim 1 : A max range cannot start with a negative-sum range.

 Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

 Together, these observations lead to a very clever algorithm...

i ... j j+1 ... k

< 0 sum(j+1, k)

sum(i, k) < sum(j+1, k)

i ... j-1 j j+1 ... k

≥ 0 < 0 sum(j+1, k)

< 0 sum(j+1, k)

sum(?, k) < sum(j+1, k)

17

Algorithm 3 code
 What complexity class is this algorithm?

 O(N). Handles many millions of elements per second!

public static int maxSum3(int[] a) {

int max = 0;

int sum = 0;

int i = 0;

for (int j = 0; j < a.length; j++) {

if (sum < 0) { // if sum becomes negative, max range

i = j; // cannot start with any of i - j-1

sum = 0; // (Claim 2)

}

sum += a[j];

if (sum > max) {

max = sum;

}

}

return max;

}

18

Runtime of first 2 versions
 Version 1:

 Version 2:

19

Runtime of 3rd version
 Version 3:

