CSE 143

Lecture 4: testing and complexity

reading: 13.1-13.2

T

I know, the _

I heard Java is an exception That's not the object
exceptional language. hierarchy is of what I was saying.
aw ful.

Oh, don't be
so primitive.

. W .
http://www.alexsweet.co.uk/comics.php?comic=2

http://www.alexsweet.co.uk/comics.php?comic=2

L sEE— T e
Tips for testing

® You cannot test every possible input, parameter value, etc.
* Think of a limited set of tests likely to expose bugs.

® Think about boundary cases
» Positive; zero; negative numbers
* Right at the edge of an array or collection's size

® Think about empty cases and error cases

* 0, -1, null; an empty list or array

* test behavior in combination
* Maybe add usually works, but fails after you call remove
* Make multiple calls; maybe size fails the second time only

- ———
Interfaces

* interface: A list of methods that a class can promise to implement.

* Inheritance gives you an is-a relationship and code sharing.
e ALawyer can be treated as an Employee and inherits its code.

* Interfaces give you an is-a relationship without code sharing.
« ARectangle object can be treated as a Shape but inherits no code.

» Always declare variables using the interface type.

List<String> list = new ArrayList<String>();

L s— T e
Runtime Efficiency (13.2)

e efficiency: measure of computing resources used by code.
* can be relative to speed (time), memory (space), etc.
* most commonly refers to run time

® Assume the following:
» Any single Java statement takes same amount of time to run.

* A method call's runtime is measured by the total of the statements inside the
method's body.

* Aloop's runtime, if the loop repeats N times, is N times the runtime of the
statements in its body.

L ee—
Efficiency examples

\
statementl; \
statement2; > 3
statement3;

_/

foraGint d = le i <= Ny T4y

statement4; N

}
>4N + 3

for (Int 1 = 1, 3 <= Ny 3+48) £

statement5;

statement6;

statement?7; > 3N
}

i

Efficiency examples 2

one o aner e e e \\
for (int 3 = 1; 3 <= N; J++) { N2
statementl;

for fint s s N 2 N2 + 4N
statement?;
ment3;
statement3 > AN
statement4 ;

statement5;
} v

® How many statements will execute if N = 10? If N = 1000?/

Algorithm growth rates (13.2)

* \We measure runtime in proportion to the input data size, N.
o growth rate: Change in runtime as N changes.

e Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.
* Consider the runtime when N is extremely large .

» We ignore constants like 25 because they are tiny next to N.
» The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

s ——— e
Complexity classes

e complexity class: A category of algorithm efficiency based on the
algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 6 sec
quadratic O(N?) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential o(2V) multiplies drastically 5 * 1061 years

——
Complexity classes

Big-O Complexity

1000

m N
i u]
—0i{1)
F s —O{logn)
3 500 Oin)
& . —0{rilogn]
—Onn2)
a0 —0{2%n)
200 + 2{nl)

http://recursive-d:

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

L s— T e
Collection efficiency

» Efficiency of our ArrayIntList or Java's ArrayList:

Method ArraylList
add O(1)
add (index, value) | O(N)
get O(1)
remove O(N)
set O(1)
size O(1)

10

L se— T e
Max subsequence sum

e Write a method maxSum to find the largest sum of any contiguous
subsequence in an array of integers.
» Easy for all positives: include the whole array.
» What if there are negatives?

211[-4|10{15]-2(22|-8|5

Largest sum: 10 + 15 + -2 + 22 = 45

 (Let's define the max to be 0 if the array is entirely negative.)

e Ideas for algorithms?

_ 11

Algorithm 1 pseudocode

Mo omta)
max = 0.
foricach starting index s
e F Rl e E BE e
sum = add the elements from af[i] to a[]].
1f sum > max,
max = sum.

return max.

1.2

Algorithm 1 code

* What complexity class is this algorithm?
» O(N?3). Takes a few seconds to process 2000 elements.

public static int maxSuml (int[] a) {
int max = 0;
borwbinb e advargalapnagbhy iy
O e e e et
// sum = add the elements from a[i] to a[j].
aliaei sa bl
Foriabdnt ik e
sum += alk];

.
4

e S

t
AR BBl (A e P b e |
max = sum;

}
}
}

147 =3 wa b ad QLR g 1 G

13

o m— e
Flaws in algorithm 1

* Observation: We are redundantly re-computing sums.

» For example, we compute the sum between indexes 2 and 5:
a[2] + a[3] + a[4] + a[5]

» Next we compute the sum between indexes 2 and 6:
al2] + a[3] + a[4] + a[5] + a[6]

» We already had computed the sum of 2-5, but we compute it again as
part of the 2-6 computation.

» Let's write an improved version that avoids this flaw.

14

o m— e
Algorithm 2 code

* What complexity class is this algorithm?
» O(N2). Can process tens of thousands of elements per second.

public static int maxSum2 (int[] a) {
int max = 0;
borwbinb e advargalapnagbhy iy

int sum = 0;
R S8 mE Ch i st el i o SR BARY Yo Al A e S A
sum += a[j];
AR (o8Bl A e = o e e
max = sum;
}
}
}

17 =33 10 5 0) QA 4 s 1> G

15

A clever solution

e (Claim 1 : A max range cannot start with a negative-sum range.

i

j+1

k

<0

sum(j+1, k)

sum(i, k) < sum(j+1, k)

e Claim 2 : If sum(i, j-1) = 0 and sum(i, j) < 0, any max range that
ends at j+1 or higher cannot start at any of i through j.

k

<0

sum(j+1, k)

sum(j+1, k)

sum(?, k) < sum(j+1, k)

» Together, these observations lead to a very clever algorithm...

16

* What complexity class is this algorithm?
» O(N). Handles many millions of elements per second!

public static int maxSum3 (int[]
R
TR ST
int i
GEm =g
if (sum < 0) {

0;

R

Algorithm 3 code

7 < a.length;
// if sum becomes negative, max range
// cannot start with any of i - j-1

sum

sum += al[j]

(Claim 2)

(sum > max)
max

147 =3 wa b ad QLR g 1 G

s — e
Runtime of first 2 versions

. : N Runtime (ms) | 60000
® Version 1: =500 = £0000
2000 47 40000 i
4000 203 30000 i
8000 781 20000 i
16000 3110 10000 .
32000 12563 0 L N N N A A
) QS O) S O O
64000 49937 NP PSSR
Input size (N)
® \ersion 2: N | Runtime (ms) | 30000
1000 16 25000
2000 16 20000 —
4000 110 15000 —
8000 406 10000 —
16000 1578 5000 - .
32000 6265 0 — T
64000 | 25031 FLFLFLFLFSLS
N S S SR S

Input size (N)

Runtime of 3rd version

® \ersion 3:

N Runtime (ms)
1000 0
2000 0
4000 0
8000 0
16000 0
32000 0
64000 0
128000 0
256000 0
512000 0
leé 0
2eb 6
4eb6 31
8eb 47
|.67e7 94
3.3e7 188
6.5e7 453
|.3e8 797
2.6e8 1578

1800
1600
1400
1200
1000
800
600 -
400 1nl
200 T

Input size (N)

19

