
Adam Blank Winter 2015Lecture 3

CSE143
Computer Programming II

CSE 143: Computer Programming II

More ArrayIntList;
pre/post; exceptions;

debugging

Questions From Last Time 1

Do you recommend reading the textbook?
Are TAs allowed to help with “style” at the IPL?
Is there extra credit?
Do you like eclipse?
Do you have to use the “this” keyword?

1 public class Example {
2 int number;
3 public incrementNumber() {
4 //Both of the following two lines work!
5 //this.number++;
6 //number++;
7
8 }
9 }

More Questions From Last Time 2

How many programmers does it take to change a lightbulb? (none,
that’s a hardware problem)
What is your favorite pizza flavor? (I’m not sure. I’ll get back to you
on this one.)
Why is it called Piazza?
What is the meaning of life? (42)
Knock Knock (Who’s there?)
What’s up? How was your day? (the ceiling; good)

O

Drawings 3 WTF’s per Minute 4

Rubber Ducky, You’re The One! 5

What is this code supposed to do? What does it do?
1 public class WTF {
2 public static void main(String[] args) {
3 int i = 0;
4 while (i < 10) {
5 System.out.println("Whee!");
6 i = i++;
7 }
8 System.out.println("Done!");
9 }

10 }

Rubber Duck Debugging
Rubber Duck Debugging is the idea that when your code doesn’t work,
you talk to an inanimate object about what it does to find the error.

The idea is to explain what your code is supposed to do vs. what it is
doing. Many times, the action of saying it out loud helps solve the
problem.

Using Fields Directly vs. Using Instance Methods 6

1 public class Circle {
2 int radius;
3 int x, y;
4
5 public Circle(int radius, int x, int y) {
6 this.radius = radius;
7 this.x = x;
8 this.y = y;
9 }

10
11 public void setX(int x) {
12 this.x = x;
13 }
14 public int getX() {
15 return this.x;
16 }
17
18 /* There are two possible implementations of moveRight... */
19 public void moveRight(int numberOfUnits) {
20 this.x += numberOfUnits;
21 }
22 public void moveRight(int numberOfUnits) {
23 this.setX(this.getX() + numberOfUnits);
24 }
25 }

Why Use Fields vs. Instance Methods? 7

Why Use Fields Directly?
It’s sometimes more readable to use the fields directly
The code is sometimes shorter

Why Use Getters and Setters?
What happens if we change the implementation (e.g. Point
location instead of int x, y)?
If there is code that checks validity of inputs, then we only put it in
one place

Duplicated Code: Methods 8

Redundant add Methods
1 /* Inside the ArrayIntList class... */
2 public void add(int value) {
3 this.set(size, value); /* THIS LINE IS DUPLICATED BELOW!!! */
4 this.size++; /* THIS LINE IS DUPLICATED BELOW!!! */
5 }
6
7 /* Inserts value into the list at index. */
8 public void add(int index, int value) {
9 for (int i = size; i > index; i−−) {

10 this.set(i, this.get(i−1));
11 }
12 this.set(size, value); /* THIS LINE IS DUPLICATED ABOVE!!! */
13 this.size++; /* THIS LINE IS DUPLICATED ABOVE!!! */
14 }

The fix is to call the more general add method from the less general one.
(As a rule of thumb, methods with fewer arguments are less general.)
So, we’d replace the first method with:

Fixed add Method
1 public void add(int value) {
2 add(this.size, value);
3 }

Duplicated Code: Constructors 9

We’d like to have two constructors for ArrayIntList:
One that uses a default size
One that uses a size given by the user

Redundant Constructors
1 /* Inside the ArrayIntList class... */
2 public ArrayIntList() {
3 this.data = new int[10];
4 this.size = 0;
5 }
6
7 public ArrayIntList(int capacity) {
8 this.data = new int[capacity];
9 this.size = 0;

10 }

This is a lot of redundant code! How can we fix it?

Fixed Constructor
Java allows us to call one constructor from another using this(. . .):

1 public ArrayIntList() {
2 this(10);
3 }

Implementing remove 10

(size = 5) 3 8 2 45 6 0 0 0
list[0] list[1] list[2] list[3] list[4] list[5] list[6] list[7]

list.remove(2):
(size = 3) 3 8 45 6 0 0 0 0

list[0] list[1] list[2] list[3] list[4] list[5] list[6] list[7]

How do we remove from the middle of the list?
Shift over all elements starting from the index to remove at
Set the last element to 0 (Do we need to do this?)
Decrement the size

Class CONSTANTS 11

Looking back at the constructor, what’s ugly about it?
1 public ArrayIntList() {
2 this(10);
3 }

The 10 is a “magic constant”; this is really bad style!! We can use:
public static final type name = value

to declare a class constant.

So, for instance:

public static final int DEFAULT_CAPACITY = 10.

Class CONSTANT
A class constant is a global, unchangable value in a class. Some
examples:

Math.PI
Integer.MAX_VALUE, Integer.MIN_VALUE
Color.GREEN

Illegal Arguments 12

1 public class Circle {
2 int radius;
3 int x, y;
4 ...
5
6 public void moveRight(int numberOfUnits) {
7 this.x += numberOfUnits;
8 }
9 }

Are there any arguments to moveRight that are “invalid”?

Yes! We shouldn’t allow negative numbers.

The implementor is responsible for (1) telling the user about
invalid ways to use methods and (2) preventing a malicious user
from getting away with using their methods in an invalid way!

Preconditions 13

Precondition
A precondition is an assertion that something must be true for a
method to work correctly. The objective is to tell clients about invalid
ways to use your method.

Example Preconditions:
For moveRight(int numberOfUnits):
// pre: numberOfUnits >= 0

For minElement(int[] array):
// pre: array.length > 0

For add(int index, int value):
// pre: capacity >= size + 1; 0 <= index <= size

Preconditions are important, because they explain method behavior to
the client, but they aren’t enough! The client can still use the method in
invalid ways!

Exceptions 14

Exceptions
An exception is an indication to the programmer that something
unexpected has happened. When an exception happens, the program
immediately stops running.

To make an exception happen:
throw new ExceptionType();
throw new ExceptionType("message");

Common Exception Types
ArithmeticException, ArrayIndexOutOfBoundsException,
FileNotFoundException, IllegalArgumentException,
IllegalStateException, IOException, NoSuchElementException,
NullPointerException, RuntimeException,
UnsupportedOperationException, IndexOutOfBoundsException

Why Use Exceptions? 15

Exceptions prevent the client from accidentally using the method in a
way it wasn’t intended. They alert them about errors in their code!

An Example
1 public void set(int index, int value) {
2 if (index < 0 || index >= size) {
3 throw new IndexOutOfBoundsException(index);
4 }
5 this.data[index] = value;
6 }
7
8 public int get(int index) {
9 if (index < 0 || index >= size) {

10 throw new IndexOutOfBoundsException(index);
11 }
12 return data[index];
13 }

Uh oh! We have MORE redundant code!

Private Methods 16

Private Methods
A private method is a method that only the implementor can use.
They are useful to abstract out redundant functionality.

Better set/get
1 private void checkIndex(int index, int min, int max) {
2 if (index < min || index > max) {
3 throw new IndexOutOfBoundsException(index);
4 }
5 }
6
7 public void set(int index, int value) {
8 checkIndex(0, size − 1);
9 this.data[index] = value;

10 }
11
12 public int get(int index) {
13 checkIndex(0, size − 1);
14 return data[index];
15 }

Hitting Capacity 17

Example ArrayList

Client View: 29 1 3 9 8 ⋯
0 1 2 3 4

Impl. View: 29 1 3 9 8
a[0] a[1] a[2] a[3] a[4]

Let’s run add(3, 8)! Uh oh! There’s no space left. What do we do?

Create a new array of double the size, and copy the elements!

Resizing (Implementor View)
Before: 29 1 3 9 8

a[0] a[1] a[2] a[3] a[4]

Resize: 29 1 3 9 8 0 0 0 0 0
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Insert: 29 1 3 8 9 8 0 0 0 0
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Arrays Reference 18

binarySearch(array, val) Returns the index of val in array if array
is sorted; (or < 0 if not found)

toString() Returns a string representation of the ar-
ray such as [3, 42, -7, 15]

sort(array) Sorts the elements of array (this edits the
original array!)

copyOf(array, len) Returns a new copy of array with length
len

equals(array1, array2) Returns true precisely when the elements
of array1 and array2 are identical (ac-
cording to .equals)

Call these with Arrays.method(arg1, arg2, ...)

Arrays Reference

Postconditions 19

Postcondition
A postcondition is an assertion that something must be true after a
method has run. The objective is to tell clients what your method does.

Example Postconditions:
For moveRight(int numberOfUnits):
// post: Increases the x coordinate of the circle by numberOfUnits

For minElement(int[] array):
// post: returns the smallest element in array

For add(int index, int value):
// post: Inserts value at index in the ArrayList; shifts all

elements from index to the end forward one index; ensures
capacity of ArrayList is large enough

Postconditions are important, because they explain method behavior to
the client.

