
CSE 143
Lecture 3: ArrayIntList;

pre/post conditions and exceptions

reading: 4.4 15.1 - 15.3

Why does style matter?
 Maintenance

 // magic number

int magicNumber = 9;

 Getting a job

 Every company has a different style guide

Implementing remove

 Again, we need to shift elements in the array

 this time, it's a left-shift

 in what order should we process the elements?

 what indexes should we process?

 list.remove(2); // delete 9 from index 2

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6

index 0 1 2 3 4 5 6 7 8 9

value 3 8 7 5 12 0 0 0 0 0

size 5

Implementing remove code
public void remove(int index) {

for (int i = index; i < size; i++) {

list[i] = list[i + 1];

}

size--;

list[size] = 0; // optional (why?)

}

 list.remove(2); // delete 9 from index 2

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0

size 6

index 0 1 2 3 4 5 6 7 8 9

value 3 8 7 5 12 0 0 0 0 0

size 5

Preconditions
 precondition: Something your method assumes is true

at the start of its execution.

 Often documented as a comment on the method's header:

// Returns the element at the given index.

// Precondition: 0 <= index < size

public int get(int index) {

return elementData[index];

}

 Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

 What if we want to actually enforce the precondition?

Bad precondition test
 What is wrong with the following way to handle violations?

// Returns the element at the given index.

// Precondition: 0 <= index < size

public int get(int index) {

if (index < 0 || index >= size) {

System.out.println("Bad index! " + index);

return -1;

}

return elementData[index];

}

 returning -1 no better than returning 0 (could be legal value)

 println is not a very strong deterrent to the client (esp. GUI)

Throwing exceptions (4.4)
throw new ExceptionType();

throw new ExceptionType("message");

 Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

 Common exception types:

 ArithmeticException, ArrayIndexOutOfBoundsException,

FileNotFoundException, IllegalArgumentException,

IllegalStateException, IOException,

NoSuchElementException, NullPointerException,

RuntimeException, UnsupportedOperationException

 Why would anyone ever want a program to crash?

Exception example
public int get(int index) {

if (index < 0 || index >= size) {

throw new ArrayIndexOutOfBoundsException(index);

}

return elementData[index];

}

 Exercise: Modify the rest of ArrayIntList to state preconditions and
throw exceptions as appropriate.

Not enough space
 What to do if client needs to add more than 10 elements?

 list.add(15); // add an 11th element

 Possible solution: Allow the client to construct the list with a larger initial
capacity.

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 4 8 1 6

size 10

Multiple constructors
 Our list class has the following constructor:

public ArrayIntList() {

elementData = new int[10];

size = 0;

}

 Let's add a new constructor that takes a capacity parameter:

public ArrayIntList(int capacity) {

elementData = new int[capacity];

size = 0;

}

 The constructors are very similar. Can we avoid redundancy?

this keyword
 this : A reference to the implicit parameter

(the object on which a method/constructor is called)

 Syntax:

 To refer to a field: this.field

 To call a method: this.method(parameters);

 To call a constructor this(parameters);

from another constructor:

Revised constructors
// Constructs a list with the given capacity.

public ArrayIntList(int capacity) {

elementData = new int[capacity];

size = 0;

}

// Constructs a list with a default capacity of 10.

public ArrayIntList() {

this(10); // calls (int) constructor

}

Class constants
public static final type name = value;

 class constant: a global, unchangeable value in a class

 used to store and give names to important values used in code

 documents an important value; easier to find and change later

 classes will often store constants related to that type
 Math.PI

 Integer.MAX_VALUE, Integer.MIN_VALUE
 Color.GREEN

// default array length for new ArrayIntLists

public static final int DEFAULT_CAPACITY = 10;

Running out of space
 What should we do if the client starts out with a small capacity, but then

adds more than that many elements?

 list.add(15); // add an 11th element

 Answer: Resize the array to one twice as large.

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 4 8 1 6

size 10

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

value 3 8 9 7 5 12 4 8 1 6 15 0 0 0 0 0 0 0 0 0

size 11

The Arrays class
 The Arrays class in java.util has many useful methods:

 Syntax: Arrays.methodName(parameters)

Method name Description

binarySearch(array, value) returns the index of the given value in a sorted
array (or < 0 if not found)

binarySearch(array,
minIndex, maxIndex, value)

returns index of given value in a sorted array
between indexes min /max - 1 (< 0 if not found)

copyOf(array, length) returns a new resized copy of an array

equals(array1, array2) returns true if the two arrays contain same

elements in the same order

fill(array, value) sets every element to the given value

sort(array) arranges the elements into sorted order

toString(array) returns a string representing the array, such as
"[10, 30, -25, 17]"

Problem: size vs. capacity
 What happens if the client tries to access an element that is past the size

but within the capacity (bounds) of the array?

 Example: list.get(7); on a list of size 5 (capacity 10)

 Currently the list allows this and returns 0.

 Is this good or bad? What (if anything) should we do about it?

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 0 0 0 0 0

size 5

Private helper methods
private type name(type name, ..., type name) {

statement(s);
}

 a private method can be seen/called only by its own class

 your object can call the method on itself, but clients cannot call it

 useful for "helper" methods that clients shouldn't directly touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}

Postconditions
 postcondition: Something your method promises will be true at the end

of its execution.

 Often documented as a comment on the method's header:

// Makes sure that this list's internal array is large

// enough to store the given number of elements.

// Postcondition: elementData.length >= capacity

public void ensureCapacity(int capacity) {

// double in size until large enough

while (capacity > elementData.length) {

elementData = Arrays.copyOf(elementData,

2 * elementData.length);

}

}

 If your method states a postcondition, clients should be able to rely on that
statement being true after they call the method.

