
Adam Blank Winter 2015Lecture 1

CSE
143

Computer Programming II

CSE 143: Computer Programming II

Welcome to CSE 143!

Course Goals 1

CSE 142 vs. CSE 143: The Big Picture
In CSE 142, you learned how to use logic, control flow, and
decomposition to write programs.

In CSE 143, you will learn to solve more complex and larger tasks
efficiently.

Big Learning Goals
Abstraction (implementation vs. client)
Data Structures (organizing complex data)
Algorithms (standard ways of completing common tasks)

We’re going to build some really cool programs. And have a lot of fun!

Support and Asking for Help 2

Resources
TWO sections a week
Tons of TAs!
The IPL (and my office hours!)
Practice-It

Asking for help is not a sign of weakness; it’s a sign of strength.

Boring Administrivia 3

Course Website
http://cs.uw.edu/143

Section
We have two sections a week.
Each section has a set of problems; turn in at least one set of problems
each week for credit.

Grading
47% programming projects, 3% section problems, 20% midterm,
30% final
Weekly programming projects assigned Fridays, due on Thursdays
5 “free late days”; -2 points for subsequent days late; up to 3 days
late on each hw

http://cs.uw.edu/143

Program Correctness: Internal & External 4

What does it mean for a program to be “correct”?
A program is only correct if it is internally correct and externally correct.

What does this code do?

1 _(__,___,____){___/__<=1?_(__,___+1,___ _):!(___%__)?_(__,___+1,0):___

%__==___ / __&&!____?(printf("%d\t",___/__),_(__,_ __+1,0)):___%__

>1&&___%__<___/__?_(__,1+ ___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

Correctness 5

What is External Correctness?
The code does the right thing on all inputs.

What is Internal Correctness?
The code is. . .

easy to read
well documented
well formatted
efficient
. . .

Internal Correctness? Psh. . . 6

Internal correctness matters, because:
Do you want a job at a software engineering company?
Do you want to ever reuse your code later?
Do you want to ever write a large program? (Like a game, maybe)
Important people think it does:

Programs must be written for people to read, and only incidentally
for machines to execute. (Abelson & Sussman)

Goals For Internal Correctness
Make non-obvious code obvious via comments.
Document all features, limitations, design decisions.
Make your code easy for someone else to read
Explain what your methods, classes, etc. are supposed to do

Grading will be on both external and internal correctness!
Google Style Guide

http://google-styleguide.googlecode.com/svn/trunk/javaguide.html

Words Exercise 7

Words Exercise
Write code to read a file and display its words in reverse order.

(Bad) Solution with Arrays
1 String[] words = new String[1000];
2 int i = 0;
3
4 Scanner inp = new Scanner(new File("words.txt"));
5 while (inp.hasNext()) {
6 String word = inp.next();
7 words[i] = word;
8 i++;
9 }

10 for (int j = i − 1; j >= 0; j−−) {
11 System.out.println(words[j]);
12 }

BAD ReverseFile

https://courses.cs.washington.edu/courses/cse143/15wi/lectures/01-05/LectureBCode/BadReverseFile.java

Review: Arrays 8

Arrays are one way to store many values of the same type (int, String,
DrawingPanel, etc.).

int[] arr = new int[8];

arr: 12 49 −2 26 2 6 26 11
arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

“Element #3 is 26” “arr has size 8”

Limitations of Arrays

Fixed, upfront size (once you create the array, it will remain that size)
Adding and removing can get complicated
No methods (and weird “.length” syntax)
Functionality for arrays is in the Arrays class:

Arrays.copyOf
Arrays.equals
Arrays.sort
Arrays.toString

Collections and Lists 9

Collections
Collections store many pieces of data of the same type.

In Java, collections are in the util package:
import java.util.*;

Different collections have different properties:
“Data ordered by indices”
“Sorted data”
“Data without duplicates”
etc.

Lists
A list is a collection of elements ordered by a 0-based index.

It supports add/remove from anywhere!
The size isn’t fixed!
There are multiple implementations; first, ArrayList

ArrayList Mechanics 10

Suppose we have an ArrayList with values: [1, 2, -6]:

Step 0: 1 2 -6 ⋯

0 1 2

Insert 5 at index 2:

Step 1: 1 2 5 -6 ⋯

0 1 2 3

Add 0 at the beginning:

Step 2: 0 1 2 5 -6 ⋯

0 1 2 3 4

Get index 3:

arrayList.get(3) → 5

ArrayList Reference 11

add(val) Appends val to the end of the list
add(idx, val) Puts val at index idx; all elements at indices idx

and larger get shifted forward
get(idx) Returns the value at index idx
set(idx, val) Replaces the value at index idx with val
remove(idx) Removes and returns the value at index idx; all

elements at higher indices get shifted backward
clear() Removes all elements from the list
size() Returns the number of elements in the list
indexOf(val) Returns the smallest index such that

get(idx).equals(val), or -1 if there is
no such index

toString() Returns a string representation of the list such
as [3, 42, -7, 15]

ArrayList Reference

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

Generics 12

Recall that we can create arrays of different types:

{1, 2, 5, 2} {“hi”, “banana”}

(new int[4]) (new String[2])

Since the array initializations specify the type of the elements, the
declaration for ArrayList’s should too:

[1, 2, 5, 2] [“hi”, “banana”]

(new ArrayList<Integer>) (new ArrayList<String>)

ArrayList is a generic class which means that it can handle any type
you want! Java knows the type by what you put in <>:

ArrayList<String> arrayList = new ArrayList<String>();

ArrayList Demo 13

String[] arr = new String[5];
arr[0] = "hi";
arr[1] = "bye";
String s = arr[0];
for (int i=0; i < arr.length; i++) {

if (names[i].contains("b")) {. . .}
}

→ ArrayList<String> list = new ArrayList<String>();
→ list.add("hi");
→ list.add("bye");
→ String s = list.get(0);
→ for (int i = 0; i < list.size(); i++) {
→ if (list.get(i).contains("b")) {. . .}
→ }

Note that these two pieces of code have different loop bounds:

arr.length == 5 list.size() == 2

ArrayList can be a Parameter or a Return Value 14

ArrayList is just another type (like DrawingPanel or String)!

1 public void methodName(. . ., ArrayList<Type> name, . . .) { . . . }
2 public ArrayList<Type> methodName(. . .) { . . . }

The following takes in an ArrayList and returns a new list containing
only the words that start with x:

1 public ArrayList<String> startingWithX(ArrayList<String> list) {
2 ArrayList<String> newList = new ArrayList<String>();
3 for (int i=0; i < list.length; i++) {
4 if (list.get(i).startsWith("x")) {
5 newList.add(list.get(i));
6 }
7 }
8 return newList;
9 }

ArrayList Demo

https://courses.cs.washington.edu/courses/cse143/15wi/lectures/01-05/LectureBCode/ArrayListDemo.java

Reversing Files Again 15

Words Exercise. . . Now with more ArrayList!
Write code to read a file and display its words. . .

1 in reverse order (but using an ArrayList)
2 with all words ending in “s” capitalized
3 with all words ending in “s” removed

1 /* Read in the words */
2 ArrayList<String> allWords = new ArrayList<String>();
3 Scanner input = new Scanner(new File("words.txt"));
4 while (input.hasNext()) {
5 String word = input.next();
6 allWords.add(word);
7 }
8
9 /* Display in Reverse Order */

10 for (int i = allWords.size() − 1; i >= 0; i−−) {
11 System.out.println(allWords.get(i));
12 }

#2 Solution

https://courses.cs.washington.edu/courses/cse143/15wi/lectures/01-05/LectureBCode/CapitalizeEndingInS.java

(Partial) Solution Continued. . . 16

1 /* Remove All Words Ending in ‘s’ */
2 for (int i = 0; i < allWords.size(); i++) {
3 String word = allWords.get(i);
4 if (word.endsWith("s")) {
5 allWords.remove(i);
6
7 /* This is the tricky part; since we removed a word,
8 * we’re actually at the SAME index again! */
9 i−−;

10 }
11 }

	Administrivia
	Internal Correctness (aka Style)
	ArrayIntList

