
1

CSE 143
Lecture 1: ArrayList

reading: 10.1

2

Welcome to CSE 143!

I'm Allison Obourn

http://cs.washington.edu/143

http://cs.washington.edu/143

3

CSE 143
 142: can automate basic tasks using a programming language (logic,

control flow, decomposition)

 143: learn tools for automating complex tasks efficiently

 Abstraction (client vs. implementation)

 Data structures

 Algorithms

 Lots of support (undergraduate TAs, IPL, message board)

5

Being Successful
 Determination, hard work, focus

 Investing time (~15 hours a week)

 Starting early

 Developing problem-solving strategies

 Knowing when to ask for help

 Go to the IPL

 Talk to me after class, during office hours

 Studying together

 Homework is individual but studying in groups pays off

6

7

Logistics
 Get to know http://cs.washington.edu/143

 2 sections a week

 Turn in ONE set of problems each week for credit

 Grading described on syllabus

 47% homework, 3% sections,

20% midterm, 30% final

http://cs.washington.edu/143

8

• Academic honesty is serious
• 40 point scale
• 5 "free late days“; you can use a

max of 3 on one assignment; -2
for subsequent days late

Weekly programming projects

9

Recall: Arrays (7.1)
 array: object that stores many values of the same type.

 element: One value in an array.

 index: 0-based integer to access an element from an array.

 length: Number of elements in the array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

length = 10

10

Words exercise
 Write code to read a file and display its words in reverse order.

 A solution that uses an array:

String[] allWords = new String[1000];

int wordCount = 0;

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords[wordCount] = word;

wordCount++;

}

 What's wrong with this?

11

Array Limitations
 Fixed-size

 Adding or removing from middle is hard

 Not much built-in functionality (need Arrays class)

12

List Abstraction
 Like an array that resizes to fit its contents.

 When a list is created, it is initially empty.

[]

 Use add methods to add to different locations in list

[hello, ABC, goodbye, okay]

 The list object keeps track of the element values that have been added to it,
their order, indexes, and its total size.

 You can add, remove, get, set, ... any index at any time.

13

Collections and lists
 collection: an object that stores data ("elements")

import java.util.*; // to use Java's collections

 list: a collection of elements with 0-based indexes

 elements can be added to the front, back, or elsewhere

 a list has a size (number of elements that have been added)

 in Java, a list can be represented as an ArrayList object

14

Type parameters (generics)
ArrayList<Type> name = new ArrayList<Type>();

 When constructing an ArrayList, you must specify the
type of its elements in < >

 This is called a type parameter ; ArrayList is a generic class.

 Allows the ArrayList class to store lists of different types.

 Arrays use a similar idea with Type[]

ArrayList<String> names = new ArrayList<String>();

names.add(“Allison Obourn");

names.add(“Adam Blank");

15

ArrayList methods (10.1)*
add(value) appends value at end of list

add(index, value) inserts given value just before the given index,
shifting subsequent values to the right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found
in list (-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting
subsequent values to the left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

* (a partial list; see 10.1 for other methods)

16

ArrayList vs. array
String[] names = new String[5]; // construct

names[0] = "Jessica"; // store

String s = names[0]; // retrieve

for (int i = 0; i < names.length; i++) {

if (names[i].startsWith("B")) { ... }

} // iterate

ArrayList<String> list = new ArrayList<String>();

list.add("Jessica"); // store

String s = list.get(0); // retrieve

for (int i = 0; i < list.size(); i++) {

if (list.get(i).startsWith("B")) { ... }

} // iterate

17

ArrayList as param/return

public static void name(ArrayList<Type> name) {// param

public static ArrayList<Type> name(params) // return

 Example:

// Returns count of plural words in the given list.

public static int countPlural(ArrayList<String> list) {

int count = 0;

for (int i = 0; i < list.size(); i++) {

String str = list.get(i);

if (str.endsWith("s")) {

count++;

}

}

return count;

}

18

Words exercise, revisited
 Write a program that reads a file and

displays the words of that file as a list.

 Then display the words in reverse order.

 Then display them with all plural words (ending in "s") removed.

19

Exercise solution (partial)
ArrayList<String> allWords = new ArrayList<String>();

Scanner input = new Scanner(new File("words.txt"));

while (input.hasNext()) {

String word = input.next();

allWords.add(word);

}

// display in reverse order

for (int i = allWords.size() - 1; i >= 0; i--) {

System.out.println(allWords.get(i));

}

// remove all plural words

for (int i = 0; i < allWords.size(); i++) {

String word = allWords.get(i);

if (word.endsWith("s")) {

allWords.remove(i);

i--;

}

}

