
Building Java Programs

Chapter 15
Lecture 15-2: more ArrayIntList; testing

reading: 4.4 15.1 - 15.3

2

Not enough space
!  What to do if client needs to add more than 10 elements?

!  list.add(15); // add an 11th element

!  Possible solution: Allow the client to construct the list with a
larger initial capacity.

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 4 8 1 6
size 10

3

Multiple constructors
!  Our list class has the following constructor:

 public ArrayIntList() {
 this.data = new int[10];
 this.size = 0;
 }

!  Let's add a new constructor that takes a capacity

parameter:

 public ArrayIntList(int capacity) {
 this.data = new int[capacity];
 this.size = 0;
 }

!  The constructors are very similar. Can we avoid redundancy?

4

this keyword
!  this : A reference to the implicit parameter

 (the object on which a method/constructor is called)

!  Syntax:

!  To refer to a field: this.field

!  To call a method: this.method(parameters);

!  To call a constructor this(parameters);
 from another constructor:

5

Revised constructors

 // Constructs a list with a default capacity of 10.
 public ArrayIntList() {
 this(10); // calls (int) constructor
 }

 // Constructs a list with the given capacity.
 public ArrayIntList(int capacity) {
 this.data = new int[capacity];
 this.size = 0;
 }

6

Searching methods
!  Implement the following methods:

!  indexOf – returns first index of element, or -1 if not found
!  contains - returns true if the list contains the given int value

!  Why do we need isEmpty and contains when we already
have indexOf and size ?
!  Adds convenience to the client of our class:

// less elegant // more elegant
if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

7

Class constants
public static final type name = value;

!  class constant: a global, unchangeable value in a class
!  used to store and give names to important values used in code
!  documents an important value; easier to find and change

later

!  classes will often store constants related to that type
!  Math.PI
!  Integer.MAX_VALUE, Integer.MIN_VALUE
!  Color.GREEN

// default array length for new ArrayIntLists
public static final int DEFAULT_CAPACITY = 10;

8

Private helper methods
 private type name(type name, ..., type name) {
 statement(s);
 }

!  a private method can be seen/called only by its own class

!  your object can call the method on itself, but clients cannot
call it

!  useful for "helper" methods that clients shouldn't directly
touch

private void checkIndex(int index, int min, int max) {
 if (index < min || index > max) {
 throw new IndexOutOfBoundsException(index);
 }
}

9

Running out of space
!  What should we do if the client starts out with a small

capacity, but then adds more than that many elements?

!  list.add(15); // add an 11th element

!  Answer: Resize the array to one twice as large.

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 4 8 1 6
size 10

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
value 3 8 9 7 5 12 4 8 1 6 15 0 0 0 0 0 0 0 0 0
size 11

10

The Arrays class
!  The Arrays class in java.util has many useful methods:

!  Syntax: Arrays.methodName(parameters)

Method name Description
binarySearch(array, value) returns the index of the given value in a sorted

array (or < 0 if not found)

binarySearch(array,
minIndex, maxIndex, value)

returns index of given value in a sorted array
between indexes min /max - 1 (< 0 if not found)

copyOf(array, length) returns a new resized copy of an array

equals(array1, array2) returns true if the two arrays contain same
elements in the same order

fill(array, value) sets every element to the given value

sort(array) arranges the elements into sorted order

toString(array) returns a string representing the array, such as
"[10, 30, -25, 17]"

11

Thinking about testing
!  If we wrote ArrayIntList and want to give it to others, we

must make sure it works adequately well first.

!  Some programs are written specifically to test other
programs.
!  We could write a client program to test our list.
!  Its main method could construct several lists, add elements to

them, call the various other methods, etc.
!  We could run it and look at the output to see if it is correct.

!  Sometimes called a unit test because it checks a small unit of
software (one class).
!  black box: Tests written without looking at the code being tested.
!  white box: Tests written after looking at the code being tested.

12

Tips for testing
!  You cannot test every possible input, parameter value, etc.

!  Think of a limited set of tests likely to expose bugs.

!  Think about boundary cases
!  Positive; zero; negative numbers
!  Right at the edge of an array or collection's size

!  Think about empty cases and error cases
!  0, -1, null; an empty list or array

!  test behavior in combination
!  Maybe add usually works, but fails after you call remove
!  Make multiple calls; maybe size fails the second time only

13

Example ArrayIntList test
 public static void main(String[] args) {
 int[] a1 = {5, 2, 7, 8, 4};
 int[] a2 = {2, 7, 42, 8};
 int[] a3 = {7, 42, 42};
 helper(a1, a2);
 helper(a2, a3);
 helper(new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});
 }

 public static void helper(int[] elements, int[] expected) {
 ArrayIntList list = new ArrayIntList(elements);
 for (int i = 0; i < elements.length; i++) {
 list.add(elements[i]);
 }
 list.remove(0);
 list.remove(list.size() - 1);
 list.add(2, 42);
 for (int i = 0; i < expected.length; i++) {
 if (list.get(i) != expected[i]) {
 System.out.println("fail; expect " + Arrays.toString(expected)
 + ", actual " + list);
 }
 }
 }

