Adam Blank Lecture 2 Winter 2015

125

Computer Programming |l

Questions From Last Time 1

m Can you cover which guidelines are being used for style?

m What is the type of an ArrayList that has 3.5, 2.7, etc.
(ArrayList<Double>)

| took CSE 142 (or equivalent) a long time ago. What should | do?
What do | need to know from 1427

m This is a test to see if you actually read all of the notecards.
m Do different companies have different style guidelines? (Yes.)
m What defines a “good comment”? (length? can they be too long?)

m What are design decisions? (See Piazza)

/

‘1:;. is Wt Aoppy screeal

e acte His Gyiends
~

R &% @
% 8
Yot

ArrayIntList

- |
_ e &~ ququ(+_
g e

. EEgp e $50, (appwcans) Mocl\qj

Questions From Last Time 2

m Coming to class late? Leaving early?

m Are exams open note? (No, but we give you a cheatsheet attached
to the exam)

m Is the class curved?

m Lighter color on slides?
m JGrasp vs. Eclipse?

m Is there a style guide?

m |s there such a thing as too many comments?

Drawings (continued) 4

AN
|
I i =~
j—\\\\ =< ‘ Jr
ol | bzﬁ‘ o o |
From he balone ‘750\) 5N3 e ypor T e Zan

50 1 avssume yovve B suck poppet. NG VNS /

Wrapper Classes 5

int vs. Integer char vs. Character double vs. Double
The lowercase versions are primitive types; the uppercase versions are

“wrapper classes”.

The following is valid code:

1 int a = 5;
2 Integer b = 10;
3 int ¢ = a + b; //You can treat ints and Integers as the same

When we create ArrayList’s, we must use non-primitive types. So:

ArraylList<int> badl = new ArraylList<int>(); // This won’t compile!
// v This will work.

ArraylList<Integer> better = new ArraylList<Integer>();
better.add(5); // We can add an ’'int’ to an ’'Integer’ ArraylList

BWN =

Classes, Objects, and Instances 7

Class
A Class is
m a complete program, or
m a “template” for a type
(Examples: ArrayList, ReverseFile, ...)

The class explains what an object is, an instance is a particular version
of the object.

-

ArraylList<String> listl = new ArraylList<String>();
2 ArrayList<String> list2 = new ArrayList<String>()
3 //listl and list2 are of ArraylList

Object
An Object combines state and behavior.

Java is an “object-oriented” programming language (OOP); programs
consist of objects interacting with each other.

Implementor w of ArrayList 9
What behavior should we support? (Methods)

add, remove, index0f, etc.

What state do we keep track of? (Fields)
m Elements stored in the ArrayList (probably stored as an array!)

m Size of ArrayList

Two Views of an ArrayList

Client View: | 3 [-23 [-5 [222 [35 | -
0 1 2 3 4
Impl. View: [3 [-23] -5 [222[3 [0 [0] 0 |

arr[0] arr(1] arr(2] arr(3] arr(4] arr(5] arr(6] arr(7]

Clients and Implementors 6

Client vs. Implementor: Medication

For a tylenol pill, who is the client? Who is the implementor?

s Pen > THE LABEL MR
e 4 pEmm e

enms. el
Ui emtenry st s e pans s

= 5 k) 1

e e ik apknecy {05 e et E

g Bimnier e

Tt o e hmEatilioe 8 B

EE ek e e :’;i’;:‘.m‘vwam._w.m gi
Gy

sz e e
Guestons orcorments?
o 67 L (57795)

et st g 5 st s
Fespa ofrschoctlen

i

Java Examples
You've already been a client!
m DrawingPanel
m ArrayList
You've already been an implementor!

m Critter

Example Class 8

A class is made up of field(s), constructor(s), and method(s).
Let's make an object Circle that represents a circle. ..
m with a size
m that can be moved right
m at a particular location
1 public class Circle {
2 /* Fields x/
3 private int radius;
4 private int x;
5 private int y;
6
7
8

/* Constructor */
public Circle(int radius, int x, int y) {

9 this.radius = radius;
10 this.x = x;
11 this.y = y;
12 }
13
14 /* Methods */
15 public void moveRight(int numberOfUnits) {
16 this.x += numberOfUnits;
17 }
18 }
ArrayIntList 10

m No generics (only stores ints)

m Fewer methods: add(value), add(index, value), get(index),
set(index, value), size(), isEmpty(), remove(index),
index0f(value), contains(value), toString()

Implementing add 11
(size=4)[3 [8] 2[4] 0] 0] 0] 0]
1st[0] 1st[1] 1st[2] 1st[3] 1st[4] 1st[5] 1st[6] 1st[7]
1st.add(222):
(ize=5)[3 [8 [2 [[222][0 [0 [0 |
1st[0] 1st[1] 1st[2] 1st[3] 1st[4]) 1st[5] 1st[6] 1st[7]
How do we add to the end of the list?
m Put the element in the last slot
m Increment the size
1 public void add(int value) {
2 this.data[size] = value;
3 size++;
4}
Implementing add #2 13

(size=4)[3 [8 [2 [4 [0] 00] 0 |
1list[0] list[1] list[2] list[3] list[4] list[5] list[6] list[7]
list.add(1, 222):
(size = 5) 3 ‘ 222 ‘ 8 ‘ 2 45 ‘ 0 ‘ 0 ‘ 0 ‘
1ist[0] 1list[1] list[2] list[3] list[4] 1list[5] 1list[6] 1ist([7]

How do we add to the middle of the list?
m Shift over all elements starting from the end
m Put the new element in its index

m Increment the size

public void add(int index, int value) {
for (int i = size; i > index; i—-) {
this.data[i] = this.data[i - 1];

this.data[index] = value;

1
2
3
4
5
6 size++;
7

}

Printing an ArrayIntList 12

System.out.println automatically calls toString on the given object.
toString looks like:

1 public String toString() {

)

3}

ArrayIntList toString:

1 public String toString() {

2 if (size == 0) {

3 return "[]";

4 }

5 else {

6 String result = "[" + this.data[0];
7 for (int i = i < this.size; i++) {
8 result += ", " + this.data[i];
9 }

10 result += "]";

11 return result;

12 }

13 }

Today’s Takeaways! ﬁ

m Understand the difference between client and implementor

m Always use wrapper classes when creating an ArrayList of a
primitive type

m Understand how ArrayList is implemented

