
CSE 143 Sample Midterm Exam #7 (11wi)

1. ArrayList Mystery
Write the output produced by the following method when passed each of the following ArrayLists:

public static void mystery(ArrayList<Integer> list) {
 for (int i = 0; i < list.size(); i++) {
 int n = list.get(i);
 if (n % 10 == 0) {
 list.remove(i);
 list.add(n);
 }
 }
 System.out.println(list);
}

List Output

a) [1, 20, 3, 40]

b) [80, 3, 40, 20, 7]

c) [40, 20, 60, 1, 80, 30]

2. Recursive Tracing
Write the output produced by the following recursive method when passed each of the following integer parameters:

public static void mystery(int n) {
 if (n <= 1) {
 System.out.print(": ");
 } else {
 System.out.print((n % 2) + " ");
 mystery(n / 2);
 System.out.print(n + " ");
 }
}

Call Result

a) mystery(8);

b) mystery(25);

c) mystery(46);

1 of 5

3. Stacks and Queues
Write a method reverseFirstK that accepts an integer k and a queue of integers as parameters and reverses the
order of the first k elements of the queue, leaving the other elements in the same relative order. For example, suppose
a variable q stores the following elements:

front [10, 20, 30, 40, 50, 60, 70, 80, 90] back
The call of reverseFirstK(4, q); should change the queue to store the following elements in this order:

front [40, 30, 20, 10, 50, 60, 70, 80, 90] back
If k is 0 or negative, no change should be made to the queue. If the queue passed is null or does not contain at least
k elements, your method should throw an IllegalArgumentException.

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• You may use one queue or stack (but not both) as auxiliary storage.
You may not use other structures (arrays, lists, etc.), but you can have as many simple variables as you like.

• Use the Queue interface and Stack/LinkedList classes discussed in lecture.
• Use stacks/queues in stack/queue-like ways only. Do not call index-based methods such as get, search, or

set (or for-each) on a stack/queue. You may call only add, remove, push, pop, peek, isEmpty, and size.

You have access to the following two methods and may call them as needed to help you solve the problem:
public static void s2q(Stack<Integer> s, Queue<Integer> q) { ... }
public static void q2s(Queue<Integer> q, Stack<Integer> s) { ... }

2 of 5

4. Collections
Write a method duplicateValues that accepts a Map from strings to strings as a parameter and returns a count of
how many values in the map are duplicates of another value in the map. For example, if a variable named map
contains the following key/value pairs:

{Marty=Stepp, Jessica=Miller, Mike=Stepp, Stuart=Reges, James=Hale, Amanda=Camp,
 Hal=Perkins, Biz=Camp, Kendrick=Perkins, Sam=Perkins, Eve=Riskin, Jane=Perkins}

In the above map, there are two occurrences of the value Stepp, so one (1) of them is a duplicate; there are two
occurrences of the value Camp, so one (1) of them is a duplicate; and there are four occurrences of the value Perkins,
so three (3) of them are duplicates. Therefore the call of duplicateValues(map) would return 1+1+3 = 5 . (One
way of thinking of it is that we could hypothetically remove 1 occurrence of Stepp, 1 occurrence of Camp, and 3
occurrences of Perkins; and those values would still be represented in the map.) If the map contains no duplicate
values or contains no values at all, your method should return 0 . Note that we are asking about duplicate values, not
keys. You should not make any assumptions about the order in which the keys or values appear in the map. You may
assume that the map is not null and that none of its keys or values are null strings.

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• You may create only up to two (2) new data structures of your choice (list, stack, queue, set, map, array,
etc.) as auxiliary storage. (You can have as many simple variables as you like.)

• Your solution should run in strictly less than O(N 2) time, where N is the number of pairs in the map.
• You should not modify the contents of the map passed to your method.

3 of 5

5. Linked Lists
Write a method frontToBack that could be added to the LinkedIntList class that moves the first element of the
list to the back end of the list. Suppose a LinkedIntList variable named list stores the following elements from
front to back:

[18, 4, 27, 9, 54, 5, 63]
If you made the call of list.frontToBack();, the list would then store the elements in this order:

[4, 27, 9, 54, 5, 63, 18]
If the list is empty or has just one element, its contents should not be modified.

For full credit, obey the following restrictions in your solution. A solution that disobeys them can get partial credit.

• Do not call any other methods on the LinkedIntList object, such as add, remove, or size.
• Do not create new ListNode objects (though you may have as many ListNode variables as you like).
• Do not use other data structures such as arrays, lists, queues, etc.
• Do not mutate the data of any existing node; change the list only by modifying links between nodes.
• Your solution should run in O(N) time, where N is the number of elements of the linked list.

Assume that you are adding this method to the LinkedIntList class (that uses the ListNode class) below.
public class LinkedIntList { public class ListNode {
 private ListNode front; public int data;
 ... public ListNode next;
 ...

4 of 5

6. Recursion Programming
Write a recursive method largestDigit that accepts an integer parameter and returns the largest digit value that
appears in that integer. Your method should work for both positive and negative numbers. If a number contains only
a single digit, that digit's value is by definition the largest. The following table shows several example calls:

Call Returns
 largestDigit(14263203) 6
 largestDigit(845) 8
 largestDigit(52649) 9
 largestDigit(3) 3
 largestDigit(0) 0
 largestDigit(-573026) 7
 largestDigit(-2) 2

For full credit, obey the following restrictions in your solution. A solution that disobeys them may get partial credit.

• You may not use a String, Scanner, array, or any data structure (list, stack, map, etc.).
• Your method must be recursive and not use any loops (for, while, etc.).
• Your solution should run in no worse than O(N) time, where N is the number of digits in the number.

5 of 5

