Lecture 25: Abstract Classes
e \We're going to consider a group of classes that store information about various shapes
o (show the code - Circle, Rectangle, Square)
o If we were really going to use these, we might have a few more methods
o But this is enough to explore the design issues
e (show the client program)
o We have to declare the array as type Object[] because it stores a combination of different
types of objects
(run the code)
When we run the code, it prints out the shapes but throws an exception when sorting the
Square
o Why?
m Because we didn’t specify how to compare shapes!
m We don’t implement Comparable
o So let’s fix this by having the Square implement Comparable
m Change the class header - “implements Comparable<Square>"
m How can we compare two shapes? By AREA
m Writing this compareTo is kind of tricky, because our fields have type double
public int compareTo (Square other) {
double difference = area() - other.area();
if (difference < 0)
return -1;
else i1if (difference > 0)
return 1;
else // difference == 0
return 0;
}
e (rerun) - This doesn’t fix our problem! Now it's complaining about the Rectangle
o What's the problem?
m We only modified the Square, not the Rectangle or Circle
m So we should make each of those comparable?
m A bigger problem: We can only compare a Square with a Square, not a Circle or
Rectangle
m But we want a compareTo that can compare to any shape
o What can we do?
m We could have a Shape interface that all the shapes implement
m And make each shape implement Comparable<Shape>
public interface Shape {
}
m And change the compareTo so that it takes a Shape as a parameter
m (doesn’t compile)
m We also have to say that we haven't told Java that Shape has an area() method
public interface Shape {
public double area();

}
o We’re still missing something very important
m We haven't said that the Square is-a Shape
m So we have to add “implements Shape”
m Even better --> have Shape extend Comparable<Shape>, and then have Square
implement Shape --> less to write overall
Copy this to the other Shapes
o Change the class headers to implement Shape
o Copy the compareTo method
(compile and run) - it works!
o In fact, we can make an improvement to the client program
o The array can be more specific now - instead of saying it's of type Object, we can say that
everything inside it is a Shape
But you should still feel very dirty right now - what did we do wrong?
o We copy/pasted an identical compareTo method
o This kind of redundancy is bad - it's more to manage if we ever want to change things
We talked about inheritance and the 20-page employee handbook that all employees share
o We want something like that here - SHARED BEHAVIOR
o So what do we do?
o Change the interface into a class
o Move the compareTo method into the new Shape class

public class Shape implements Comparable<Shape> {
public double area();

public int compareTo (Shape other) {
double difference = area() - other.areal():;
if (difference < 0)
return -1;
else if (difference == 0)
return O;
else // difference > 0
return 1;
}
}
But this doesn’t compile :(

Error: missing method body, or declare abstract
What's the problem?
m We have an area method, but it doesn’t define any code!
m The definitions are in the individual shape classes, and are each different
What can we do?
m Delete that method from the Shape class
e Doesn’t work, because the compareTo needs the area() method
m Sometimes we have “dummy” method stubs
e Return a dummy value
public double area() {
return 42.42;

o

o

O

}
e This allows us to compile, but it's bad --> what if a subclass doesn’t override
it?
e It's better to leave the method unspecified, like an interface
So what’s the solution?
The error message we got actually tells us what to do!
We should “declare abstract”
It turns out that abstract is a modifier just like “public” and “static”
m We can add it to the method header, and it just means that “| am not defining this
method yet”
But it still doesn’t compile!
m It says that the class isn’t declared abstract

O

o O O

O

m If you want to have an abstract method, the entire class has to be declared abstract

e \We have to change the rest of the classes to extend this class, rather than implementing an
interface
e So now we see today’s topic: abstract classes
o There is a continuum of class types in Java

concrete <---—t+---———————————————————— t-—m +----> abstract

concrete class abstract class interface
o We have normal classes, which declare ALL methods

o We have interfaces, which are ONLY method headers - declare NO methods
o And in between is the abstract class, which defines SOME methods
e What if we try to do something like this?
Shape s = new Shape(); // illegal
o It won’t work, because some of the Shape’s methods are not declared yet
o You can'’t instantiate an instance of an abstract class

o But you can use the abstract class as a variable type, just like with an interface
Shape s = new Rectangle (20, 30); // legal
e \We can relate this to the idea of an Employee from last week

o Everyone is an employee, and they have some common behaviors (the 20 page booklet),
but you can’t have JUST an employee
o Imagine if someone asked you “what do you do?” and you said “I'm an employee”
m It's true, but you must have a specialization
o In our company, we'd probably have Employee be an abstract class
m Because it's a useful way to share behaviors
m While it prevents anyone from being JUST an employee
e There’s still some redundancy in our classes
The toString method is very similar - with different names but same string otherwise
What can we do?
Copy paste the toString into the abstract class
But we need to distinguish the name
We could add a field that stores the name of the shape, and pass it in to the constructor
Then the subclasses will call the super() constructor, passing in their name

o

o O O O O

public abstract class Shape implements Comparable<Shape> {
private String name;
public Shape (String name) {
this.name = name;

}

}
Finally, there’s one more keyword of interest

o The “final” keyword
o Where have we seen it before?
m In class constants
o What does it mean?
m It means that whatever it's describing cannot be changed
We can use it on methods, which means that subclasses CANNOT override the method
So if you're worried that a subclass might mess something up, make the method final
The toString and compareTo should both be final - we don’t want a subclass overriding the
compareTo and always returning 1.
o Ifit overrode the toString it might be able to pretend to be something that it’s not (i.e. a
Triangle could seem to be a Square)
What are the benefits/disadvantages of using abstract classes (compared with normal classes
and interfaces)?
o Pro (compared with interface) - we can reduce redundancy
o Con (compared with interface) - we use up our inheritance relationship - the class cannot
extend any other class
o Pro (compared with normal class) - we don’t have to have “dummy” methods
Another application
o Does anyone have any ideas where else we can use this idea of an abstract class?
o Inthe ArrayList and LinkedList

