
CSE143 Inheritance Example 
 
Assuming that the following classes have been defined: 
 

public class One { 
    public void method1() { 
        System.out.println("One1"); 
    } 
} 
 
public class Two extends One { 
    public void method3() { 
        System.out.println("Two3"); 
    } 
} 
 
public class Three extends One { 
    public void method2() { 
        System.out.println("Three2"); 
        method1(); 
    } 
} 
 
public class Four extends Three { 
    public void method1() { 
        System.out.println("Four1"); 
        super.method1(); 
    } 
    public void method3() { 
        System.out.println("Four3"); 
    } 
} 

 
And assuming the following variables have been defined: 
 

One var1 = new Two(); 
One var2 = new Three(); 
One var3 = new Four(); 
Three var4 = new Four(); 
Object var5 = new Three(); 
Object var6 = new One(); 

 



In the table below, indicate in the right-hand column the output produced by the statement in the left-hand 
column. If the statement produces more than one line of output, indicate the line breaks with slashes as in 
"a/b/c" to indicate three lines of output with "a" followed by "b" followed by "c". If the statement causes an 
error, fill in the right-hand column with either the phrase "compiler error" or "runtime error" to indicate when 
the error would be detected. 
 

Statement                       Output 
------------------------------------------------------------ 

var1.method1();                 ____________________________ 

var2.method1();                 ____________________________ 

var3.method1();                 ____________________________ 

var4.method1();                 ____________________________ 

var5.method1();                 ____________________________ 

var6.method1();                 ____________________________ 

var4.method2();                 ____________________________ 

var4.method3();                 ____________________________ 

((Two)var1).method2();          ____________________________ 

((Three)var1).method2();        ____________________________ 

((Two)var1).method3();          ____________________________ 

((Four)var2).method1();         ____________________________ 

((Four)var3).method1();         ____________________________ 

((Four)var4).method3();         ____________________________ 

((One)var5).method1();          ____________________________ 

((Four)var5).method2();         ____________________________ 

((Three)var5).method2();        ____________________________ 

((One)var6).method1();          ____________________________ 

((One)var6).method2();          ____________________________ 

((Two)var6).method3();          ____________________________ 



CSE143 Inheritance Example 
Solution 

Call Output Discussion 
var1.method1(); One1 variable is of type One, One role includes method1, no cast, actual 

object is a Two which writes out "One1" when method1 is called 
var2.method1(); One1 variable is of type One, One role includes method1, no cast, actual 

object is a Three which writes out "One1" when method1 is called 
var3.method1(); Four1/One1 variable is of type One, One role includes method1, no cast, actual 

object is a Four which writes out "Four1/One1" when method1 is called 
var4.method1(); Four1/One1 variable is of type Three, Three role includes method1, no cast, actual 

object is a Four which writes out "Four1/One1" when method is called 
var5.method1(); compiler error variable is of type Object, Object role does not include method1 
var6.method1(); compiler error variable is of type Object, Object role does not include method1 
var4.method2(); Three2/Four1/One1 variable is of type Three, Three role includes method2, no cast, actual 

object is a Four which writes out "Three2/Four1/One1" when method2 
is called (note that method2 calls its method1 polymorphically, which is 
why this output includes "Four1") 

var4.method3(); compiler error variable is of type Three, Three role does not include method3 (even 
though the object itself is a Four that is capable of performing this 
action) 

((Two)var1).method2(); compiler error because of cast we pay attention to it rather than the variable type 
(because we have renegotiated the contract), cast is to Two, Two role 
does not include method2 

((Three)var1).method2(); runtime error cast is to Three, Three role includes method2 so we pass the compiler, 
but actual object is a Two which can't fill the Three role (casting across 
the hierarchy, like asking someone to accept a bike when they were 
expecting a car), so we get a runtime error 

((Two)var1).method3(); Two3 cast is to Two, Two role includes method3, actual object is a Two 
which cal fill the Two role, so the cast is okay, and a Two object writes 
"Two3" when its method3 is called 

((Four)var2).method1(); runtime error cast is to Four, Four role includes method1, actual object is a Three 
which can't fill the Four role; this was, in essence, a stupid cast to do 
because it isn't necessary, but if you tell this kind of lie, Java will 
complain 

((Four)var3).method1(); Four1/One1 cast is to Four, Four role includes method1, actual object is a Four 
which can fill the Four role, so cast is okay and a Four object writes 
"Four1/One1" when method1 is called 

((Four)var4).method3(); Four3 cast is to Four, Four role includes method3, actual Object is a Four, 
which can fill the Four role, so cast is okay and a Four object writes 
"Four3" when method3 is called 

((One)var5).method1(); One1 cast is to One, One role includes method1, actual object is a Three, 
which can fill the One role, so cast is okay and a Three object writes 
"One1" when method1 is called 

((Four)var5).method2(); runtime error cast is to Four, Four role includes method2, actual object is a Three 
which can't fill the Four role 

((Three)var5).method2(); Three2/One1 cast is to Three, Three role includes method2, actual object is a Three 
which can fill the Three role and a Three object writes "Three2/One1" 
when method2 is called 

((One)var6).method1(); One1 cast is to One, One role includes method1, actual object is a One which 
can fill the One role, so cast is okay and a One object writes "One1" 
when method1 is called 

((One)var6).method2(); compiler error cast is to One, One role does not include method2 
((Two)var6).method3(); runtime error cast is to Two, Two role includes method3, actual object is a One, 

which can't fill the Two role 

 


