Lecture 20: Comparable
e Today we're going to talk about developing a class that represents an angle
o An Angle could be used to keep track of a Latitude and Longitude
m e.g. SeaTac Airport is at 47 deg 39 min North and 122 deg 30 min West
o Each angle has both a number of degrees and a number of minutes
o Start with a simple class with fields/constructor
public class Angle {
private int degrees;
private int minutes;

public Angle (int degrees, int minutes) {

this.degrees degrees;

this.minutes = minutes;

}

e (Show the client program, run it)
The printed result doesn’t give us much information - [Angle@42719c, Angle@30c221]
This is the default toString of all objects, but we want something better
So let’s “override” the toString method
We’d really like to use the standard symbols for degrees and minutes (° and ‘) but we’ll
make do with “d” and “m”

public String toString () {

O

o

o

return degrees + "d " + minutes + "m";
}
e (rerun the client program)
e Other functionality that you might want: add two angles together
o What we want to do is something like this:
Angle al = new Angle (23, 26);
Angle a2 = new Angle (15, 48);
Angle a3 = al + a2z;
o But we can’t do that because the “+” is only for number addition and String concatenation
m Some languages allow “operator overloading” - allowing a symbol to apply in more
circumstances
m But Java doesn’t, so we have to use methods
o We can do something like this:
Angle al = new Angle (23, 26);
Angle a2 = new Angle (15, 48);
Angle a3 = al.add(a2);
This is a Java convention
Implement the add method
public Angle add(Angle other) {
int d = degrees + other.degrees;
int m = minutes + other.minutes;
return new Angle(d, m);

o Remember, we can access the private fields of the other Angle (private means private to
the class)

o Modify the client code to add the third angle to the list, and run
But now we see a problem - the added angle has 74 minutes, which isn’t actually allowed
Minutes are between 0 and 60
What can we do?
We could change the constructor to “condense” everything, but that’'s not what | want to do
Instead, let’s add a precondition to the constructor

// pre: minutes <= 59 and minutes >= 0 and degrees >= 0
And throw an exception if the precondition is not satisfied

// pre: minutes <= 59 and minutes >= 0 and degrees >= 0

o O O O

O

// (throws IllegalArgumentException if not true)
public Angle(int degrees, int minutes) {
if (minutes < 0 || minutes > 59 || degrees < 0)

throw new IllegalArgumentException();
But now we still need to handle the case in add() when the minutes exceed 59
public Angle add(Angle other) {
int d = degrees + other.degrees;

o

int m = minutes + other.minutes;
if (m >= 60) {
m -= 60;
d++;
}
return new Angle(d, m);
}
o We could also use mod and integer division
Now | want to modify the Angle class so that we can put a collection of angles into sorted order
o Add the following the client code
int[][]data = {{30, 19}, {30, 12}, {30, 45}, {30, 8}, {30, 55}};
for (int[] coords : data) {
list.add(new Angle (coords[0], coords[1l]));
}
System.out.println(list);
Collections.sort(list);
System.out.println(list);
o This doesn’t compile!
o We haven't told Java yet how to put things in sorted order
m We know that 45d15m is more than 30d30m, but how would Java figure that out?
o In order to use built-in functionality like Collections.sort or Arrays.sort, we have to use the
Comparable<E> interface
m (show the Comparable documentation in the Java API)
m This interface has exactly one method called compareTo

e Comparable<E> and compareTo
o Many common classes that we've seen implement the Comparable interface
m String, Integer
o But some classes don’t
m Point - doesn’t make sense to order a point (do you order by x or y? what makes
one point less than another?)
o The compareTo method returns
m a negative integer if this object is “less than” the other
m a positive integer if this object is “greater than” the other
m 0O if this and the other object are “equal”
o So implementing this interface means that we are certifying that this class can compare
itself to another of the same type
e We start by making the Angle class implement the Comparable interface
public class Angle implements Comparable<Angle> {
e And then we write the compareTo method
o First version
public int compareTo (Angle other) {
if (degrees > other.degrees) {
return 1;
} else if (degrees < other.degrees) {
return -1;
} else {
return 0;

}
o Second version
public int compareTo (Angle other) {
return degrees - other.degrees;
}
o But this isn’t quite right, because what if the degrees are the same but the minutes are
different?
public int compareTo (Angle other) {

if (degrees == other.degrees)
return minutes - other.minutes;
else
return degrees - other.degrees;

}
(run the code)

Tomorrow in section, more Comparable practice
On the final, you’ll have to write a Comparable class - practice!

e Another application of Comparable: IntTree --> SearchTree<E>
o | want to transform my IntTree into a tree capable of storing a binary search tree of any type
of sortable data (e.g. String, Angle...)
o Obviously this is better than writing a separate tree for each type - e.g. a StringTree,
AngleTree...
o Programming generics is tricky
m I’'m showing you how it's done, but | don’t expect you to be able to do this on your
own
e IntTreeNode --> SearchTreeNode<E>
public class SearchTreeNode<E> {
public E data;
public SearchTreeNode<E> left;
public SearchTreeNode<E> right;

public SearchTreeNode (E data) {
this(data, null, null);

public SearchTreeNode (E data, SearchTreeNode<E> left,
SearchTreeNode<E> right) {
this.data = data;
this.left left;
this.right = right;

}
Then modify the IntTree - find/replace to change all IntTreeNode to SearchTreeNode<E>

We also have to update the add() method
o If we replace int with E and the switch out the node type, we're almost there
o But we can no longer do this:
else if (value <= root.data)
o So we have to change it to this:
else i1if (value.compareTo (root.data) <= 0)
e There’s one more change: this won’t compile
o Problem is this: how does Java know that you can call compareTo on the value?
o Well, we can assume that this is the case, and do a cast:
else 1f (((Comparable<E>) value) .compareTo (root.data) <= 0)
o If the client uses the SearchTree with an uncomparable value, it’s their fault
o This is what Sun does most of the time
o Another approach: tell Java that the “E” type has a constraint, that it must implement
Comparable
public class SearchTree<E extends Comparable<E>> {
o Weird that it uses the extends keyword, but that’s Java

