Lecture 17: Binary Trees (1)
e Midterm recap
o Median: 66.5, Mean: 64.9
o Harder than | expected, so +12 point curve
m (won’t be reflected on MyUW, but factored into course grades)
o The answer key is posted
o Regrade information will be posted soon
e Collaboration reminder
o | have found a number of cheating cases, and | would like to remind everyone to review the
collaboration policy
o Gilligan’s Island Rule: you can talk about it, but give 30 minutes after you stop talking before
you write any code down
e Today we're introducing a new topic: binary trees
o In computer science a tree looks kind of like this:
12
/N
/ \
18 7
/\
/ \
4 13
o Notice that it's upside-down compared with a normal living tree
m Like a family tree
We’'ll start with some terminology
We refer to the ROOT (the 12), LEAVES (the 18, 4, 13), and BRANCHES (the 12, 7)
m The root is the base of the tree
m Leaves have nothing beyond them
m Branches are on the path from the root to the leaves (root is also a branch)
o We also have terminology kind of like the family tree: PARENT and CHILD
m Root is the ancestor of all other nodes
m 12 is the parentof 18 and 7, 18 and 7 are 12’s children
m Each node has exactly one parent
m We sometimes refer to 18 and 7 as SIBLINGS
o Trees can be structured such that each root can have arbitrarily many children, but for this
class, we will deal with BINARY TREES - each root has 2 children

e Now, for a more formal definition of a tree
o We will define a tree recursively

o

o

m What is the simplest possible type of tree you could have?
e A one-element tree? A leaf?
e Actually, a null tree! (empty)
m And if it's not null, then it's a root node with left and right subtrees

pom - +
/ \
/ \
/ \
/\ /\
/ 0\ / 0\
/ \ / \
/ left \ / right\
/ subtree\ / subtree\
fmm - + fmm - +

This is very important to understand: each tree is composed of smaller trees
This will be very important when writing code to process trees

e Using this definition, what kind of trees can we draw?

o

o

Well, we can draw an empty tree
1 node, two 2 node, 5 3 node...

e IntTreeNode class

o

o
o
o

o

It turns out that a tree is a lot like a linked list, but instead of one next, there are 2 nexts
The first constructor builds a leaf
The second constructor builds a branch with left and right subtrees
Just like in a linked list, we will terminate our branches with null - a leaf has null left and right
subtrees
It's not well encapsulated, just like the ListNode - why was that ok?
m Because we had a LinkedIntList class, and the client never got access to the
internal nodes
So we’'ll do the same thing here - have an IntTree
m Has one field - the overallRoot (to distinguish it from all the other roots)
m Question: in one of our examples, how many TREES are there? How many roots?

e We'll get to building trees in a second, but first, how would we look at everything in a tree?

o

There’s an easy way to look at everything in a linked list - just start at the beginning and go
forward
But not so obvious for a tree
What ways could we go through all the values in a tree?
The idea is to TRAVERSE the tree, visiting each node only once
m There’s a fairly obvious way of doing this - look at the left subtree, then the right
subtree
m We have a left-right Western bias, so we always deal with the left first

o But the question becomes: when do we deal with the root?
o What are the choices?
m Before we deal with the left side
m In between left and right
m After the right side
o We call these preorder, inorder, and postorder, respectively
e Simulate these traversals on an example
o You'll have a question like this on your final
o The “sailboat” method: think of a sailboat sailing around the tree
m Preorder: print when the sailboat gets to the left-hand side of the node
m Inorder: print when the sailboat gets to the bottom of the node
m Postorder: print when the sailboat gets to the right-hand side of the node
e Now let’s write code for our IntTree class that will traverse the tree and print out the values
o Write a method to print using a preorder traversal
o You will almost ALWAYS have a public-private pair when writing these tree methods
m Since trees are recursive structures, we need to write a recursive method
m But that means that we need to know which subtree we’re looking at
m How do we tell the helper method where we are in the tree?
m We pass it a “root” parameter
o Start with the public method:
public void printPreorder () {
System.out.print ("preorder:") ;
printPreorder (overallRoot) ;
System.out.println();
}
o For our private method, think recursively
m What is the simplest type of tree to print?
e The empty tree
m How do we print the empty tree?
e Do nothing
e So actually, we reverse the condition
m So if the tree is not empty, then we have a node with a left and a right and some
data inside of it
We’'re doing a preorder traversal so we’ll print out the root’s data first (incl. space)
And what work do we have left to do? We need to print the left subtree and right
subtree in a preorder manner
m “if only | had a method...”
private void printPreorder (IntTreeNode root) {
if (root != null) {
System.out.println(" " + root.data);
printPreorder (root.left);
printPreorder (root.right) ;

m And we're done!
e We can also do printlnorder and printPostorder, just by changing the order of the statements in the
private method
e Another task: write a constructor that builds up the following tree:

/\ /\ /
8 9 10 11 12
e Note that the children of a node have values 2*n and 2*n+1
e Code:
public IntTree2 (int max) {
if (max < 0) {
throw new IllegalArgumentException("max: " + max);
}
overallRoot = buildTree (1, max);
}
private IntTreeNode buildTree (int n, int max) {
if (n > max) {
return null;
} else {
IntTreeNode left = buildTree (2 * n, max);
IntTreeNode right = buildTree(2 * n + 1, max);
return new IntTreeNode (n, left, right);

}
e And finally, printSideways
public void printSideways () {
printSideways (overallRoot, 0);

private void printSideways (IntTreeNode root, int level) {
if (root != null) {

printSideways (root.right, level + 1);

for (int i = 0; 1 < level; i++) {
System.out.print (" ")

}

System.out.println(root.data);

printSideways (root.left, level + 1);

