Lecture 14: Finish up Maps, recursive backtracking
e Wel'll finish up the Friends program from Monday
e run Jessica/Melissa
e Another problem: Ashley appears at distance 1, 3, 4...
o Why is this?
m She’s friends with a friend of a friend
o But we don’t want this - we just want the first time we see the friend
o How can we do this?
m Naive: ignore the previous group’s names in the next group
nextGroup.removeAll (currentGroup) ;
m But this doesn’t actually work because names like Ashley might not appear for a
level, but then reappear b/c friend-of-a-friend

m Keep track of another set of people who have been seen before
Set<String> alreadySeen = new TreeSet<String>() ;

while (!currentGroup.contains (name2)) {
distance++;

alreadySeen.addAll (currentGroup) ;
Set<String> nextGroup = new TreeSet<String>();
for (String friend : currentGroup) {

nextGroup.addAll (friends.get (friend)) ;
}

nextGroup.removelAll (alreadySeen) ;

e Another problem: run Melissa/Bart
o We never stop!

o Solution:
while (!currentGroup.contains (name2) && !currentGroup.isEmpty()) {
}
if (currentGroup.contains (name2)) {
System.out.println ("found at a distance of "+distance);
} else {

System.out.println ("not found");

}
e The goal of this program
o Review of sets/maps
o Demonstration of mapping with complicated values

e Now we’re switching back to a new topic: a particular application of recursion called recursive
backtracking

o

(@]

o

o O O O

An approach to solving some types of problems
An example: write a method to print out all possible ways that you could roll n dice.
So, for example, diceRoll(2) would give:

[1, 1] [2, 1] [3, 1]

[1, 2] [2, 2] [3, 2]

[1, 3]... [2, 3]... [3, 3]...
When you were writing out the possibilities, how did you figure out what to do?

m Set the first dice to 1, then considered all possible rolls of dice 2

Set the first dice to 2, then considered all possible rolls of dice 2
Set the first dice to 3, then considered all possible rolls of dice 2

You can make a table to describe our process
1st 2nd 3rd. ..

1 Yy - Yy

2 - y -

3 - - -...
The idea here is that we make one choice (e.g. the first die’s value), then we EXPLORE all
possibilities that include that choice, then UNCHOOSE that choice and make a different
one

m This process - choose, explore, unchoose - is common to recursive backtracking

problems

We could do this with nested loops

m for(inti=1;i<7;i++)

o for(intj=1;j<7;jt++)...
But we don’t know how many loops we’ll need (don’t know how many dice)
So, not surprisingly, we’ll use recursion
(show the solution, explain)
You can also visualize the process as a decision tree
3 dice

1, 2 dice 2, 2 dice 3, 2 dice 4, 2 dice 5, 2 dice 6, 2 dice
1,1, 1 die 1,2, 1 die 1,3,1die 1,4,1die 1,5, 1die 1,6, 1 die

e Backtracking is a BRUTE-FORCE search algorithm that explores all possible options in some
SEARCH SPACE

o

Questions to ask
m Whatis a “choice”? How do | know when I'm out of choices?
How do | “make” a choice?
How do | explore the remaining choices?
Once I'm done exploring what do | do? Print, return?
How do | “'unmake” a choice?

| want to modify my dice-roll solution to instead print out only rolls that have a sum equal to some

given value
o For example diceSum(2, 11) will print out [5,6] and [6,5]
o So what do we want to say (in English)
m In the base case, print only if the sum is equal to the target sum
m So our private helper needs more information - the desired sum and the current sum
(current sum isn’t strictly necessary) as parameters
m when recursing, pass desired sum and sum so far
m Can also prune sums that are too big, or that cannot possibly make it all the way
o Solution:
public static void diceSum(int dice, int desiredSum) {
List<Integer> chosen = new ArraylList<Integer>();
diceSum2 (dice, desiredSum, chosen, 0);
}
private static void diceSum(int dice, int desiredSum,
List<Integer> chosen, int sumSoFar) {
if (dice == 0) {
if (sumSoFar == desiredSum) {
System.out.println (chosen) ;
}
} else if (sumSoFar <= desiredSum &&
sumSoFar + 6 * dice >= desiredSum) {
for (int 1 = 1; 1 <= 6; 1i++) {
chosen.add (i) ;
diceSum(dice - 1, desiredSum, chosen, sumSoFar + 1i);

chosen.remove (chosen.size () - 1);

