Lecture 13: Hard sets/maps
e Brief review of sets/maps
o A setis a collection of elements - how different from an ArrayList or LinkedList?
m Unordered, no duplicates
m add/remove, but no indices
o And how does a map work
m Key-->value pairs
m put/get/remove
o Both can be Hash or Tree
e The Friends program
We’re going to be modeling friendships
Think of visualizing the Facebook graph
People are nodes, and friendships between them are edges
First of all: are friendships bidirectional (i.e. if I'm friends with you, are you friends with me?)
m For our purposes YES (a la Faceook)
o I'musing a program called GraphViz to visualize the friendship graph
m (show the input file - .dot)
o We'll write a program that takes two names and figures out how far apart they are - how
many friends-of-friends away are they?
m E.g. Melissa/Ashley
m Melissa/Bart
m Bart/Tom
m (run the complete version of the program)
e We need a structure to keep track of these friendships
o What kind of structure
m Amap
o Why a map? What are the keys? What are the values? (in English)
m Names are the keys, values are the people that that person is friends with (edges)
o What are the types of the keys/values?
m Map<String, Set<String>>
m Not Map<String, String> because then each person could have only 1 friend!
o (show the starter code - implement readFile)
o First we need to create our structure
Map<String, Set<String>> friends = new TreeMap<String,
Set<String>> () ;
o Given two names, how do we update our structure?
m Remember, friendships are bidirectional
m So we have to update BOTH people’s friends
m We’re going to do the same thing twice - great place for a helper method
addTo (friends, namel, name?2);

o O O O

addTo (friends, name?2, namel);

o In pseudocode:
m Get the set for the first name
m Add the second name to that set
m (start with the second two lines of code) - (could write as one line)
o But what’s the problem?
m Originally, there’s nothing in the map! What if name1 isn’t in the map?
m We'd get a null pointer exception
m So the very first time, we have to add the name to the map
o The method:
public static void addTo (Map<String, Set<String>> friends, String
namel,
String name2) {
if (!friends.containsKey(namel)) {
friends.put (namel, new TreeSet<String>());
}
Set<String> namelFriends = friends.get (namel)
namelFriends.add (name?2) ;
}
e Now that we’ve constructed the map, review what we want to do
o (run the program again, Jessica to Melissa)
o (use highlighters to color the friendship graph)
o How does the program find the people who are 1 away?
m Jessica’s friends
o How does the program find the people who are 2 away?
m The friends of Ashley/Michael
etc.
So we need to do the same thing repeatedly (find the friends of all the current friends) - a
loop!
o We also need a way to store the current friends who are the current distance away
m Aset
m And who is the very first group of people to consider?
o So preliminary code:
Set<String> currentGroup = new TreeSet<String>();
currentGroup.addAll (friends.get (namel));
int distance = 1;
while (we haven't found the person) {
distance++;
// update group
}

System.out.println ("found at a distance of " + distance);
o How do we know when to stop? What does it mean to “find” the target person?
!currentGroup.containsKey (name?2)

e How do we update the group?
o We said that we use the friends of everyone in the current group

o So we create a new set for the next group, loop through the current group, and add all their
friends

o Also, we had a printin
Set<String> nextGroup = new TreeSet<String>();
for (String friend : currentGroup) {

nextGroup.addAll (friends.get (friend));
}

currentGroup = nextGroup;
System.out.println (" " + distance + " away: " +
currentGroup) ;
o (try program: Jessica/Melissa)
m Does find friends at the right distances, but finds them more than once
m Does find Melissa at the right distance
o (try program: Jessica/Jessica)
m But Jessica shouldn’t be a friend of a friend - distance should probably be 0
m How can we fix that?
m Start with distance 0, which contains just Jessica
Set<String> currentGroup = new TreeSet<String>();
currentGroup.add (namel) ;
int distance = 0;
m Rerun with Jessica/Jessica, Jessica/Melissa
m Now we also print out distance 1, which is more complete
Another problem: Ashley appears at distance 1, 3, 4...
o Why is this?
m She’s friends with a friend of a friend
o But we don’t want this - we just want the first time we see the friend
o How can we do this?
m Naive: ignore the previous group’s names in the next group
nextGroup.removeAll (currentGroup) ;
m But this doesn’t actually work because names like Ashley might not appear for a
level, but then reappear b/c friend-of-a-friend

m Keep track of another set of people who have been seen before
Set<String> alreadySeen = new TreeSet<String>() ;

while (!currentGroup.contains (name?2)) {
distance++;
alreadySeen.addAll (currentGroup) ;
Set<String> nextGroup = new TreeSet<String>();
for (String friend : currentGroup) {
nextGroup.addAll (friends.get (friend));
}

nextGroup.removelAll (alreadySeen) ;

e Another problem: run Melissa/Bart
o We never stop!

o Solution:
while (!currentGroup.contains (name?2) && !currentGroup.isEmpty()) {
}
if (currentGroup.contains (name2)) {

System.out.println ("found at a distance of "+distance);
} else {

System.out.println ("not found");

}
e The goal of this program
o Review of sets/maps

o Demonstration of mapping with complicated values
e Midterm info

o What types of problems

o Sample midterms online by this evening

o [I'll try to keep it the same length as a midterm during the year - but you get 1 hour instead of

50 minutes!

