Lecture 11: Recursion (hard)
e Recap/finish: stutter an integer
o 348 --> 334488
o We added the base case
o So how do we deal with larger numbers - how can we split them up?
m We need to split into smaller chunks
Since our base case is 1 digit, we need to process 1 digit
We can do this with /10 and %10
Then we have 34 and 8. Let’s trust that our method works; we could call it to turn
these into 3344 and 88.
How do we combine 3344 and 88 into a single number?
Can’t simple add --> would give 3432
Instead, we want 334 THOUSAND - we need to shift over the 3344!
m Multiply by 100
o What about negative numbers?
m Special case for these
e Other problems:
o Recursively sum an integer array
m Turns out to be challenging with recursion
What's the base case? Empty array?
But then what is the recursive case? We can’t create new arrays
Write the iterative version
Is there a little bit of this puzzle that we can pick off?
Yes, if we can refer to indexes!
sum(entire 1list) = 1list[0] + sum(list starting at 1)
When would we stop in this case?
So we need to know which index we’re at - we need another parameter
Public/private - sometimes this is good (want to do extra stuff beforehand - eg
exception checks)
// returns the sum of the numbers in the given array

public int sum(int[] 1list) {
return sum(list, 0);

// computes the sum of the list starting at the given index
private int sum(int[] list, int index) {
if (index == list.length)
return 0;
else
return list[index] + sum(list, index + 1);

o isPalindrome(String s)
m Using a string
// Returns true if the given String reads the same
// forwards as backwards and false otherwise.
public static boolean isPalindrome (String word) {

if (word.length () < 2) {

return true;
} else {

char first = word.charAt (0);

char last = word.charAt (word.length() - 1);

if (first != last) {
return false;

}

return isPalindrome (word.substring(l, word.length() - 1));

o printBinary
// writes the binary representation of n to System.out
public static void writeBinary(int n) {
if (n < 0) {
System.out.print ("-");
writeBinary(-n);
} else if (n < 2)
System.out.print (n);
else {
writeBinary (n/2);

[e)

System.out.print(n % 2);

o pow(base, exp)
public static int pow(int base, int exp) {

if (exp == 0) {
return 1;

} else if (exp % 2 == 0) {
// 2°16 —-=> (2

~2)"8
// base”exp -> (base”2)“exp/2
return pow(base * base, exp / 2);
} else {
return base * pow(base, exp - 1);

Crawler

o

o

o

O

O

Let’s write a program that prints out the contents of a file (with indentation indicating files

within folders)

m Like the “file browser” of your operating system
Files are recursive structures

m A file can be a single file

m Or it can be a directory that contains other files

m So it makes sense to use recursion to explore them

We'll prompt the user for a file and then print that file (and possibly its contents, if it has any)

m Java has a File class (that we’ve used before) that will help us
m Examine the Java API for more information
m (show the starter code)

m The real work will be in the print method (right now, very boring - show what it does)

Starter code does the right thing for files

We’re going to work towards the final solution bit-by-bit, doing pieces and putting them

together

But we want to print out all the contents of directories

o O O O O

The Java File class represents both files AND directories
We can give it a File linked to a file, or a File linked to a directory
To do this, we need to look at all the files inside the directory
It turns out the File class has this ability: listFiles, which returns an array of Files
So we can do this:
public static void print(File f) {
System.out.println (f.getName ()) ;
File[] files = f.listFiles{();
for (int i = 0; 1 < f.length; i++) {
// do something with files[i]

}
But even better, use a for-each loop:
public static void print(File f) {
System.out.println (f.getName ()) ;
for (File subF : f.listFiles()) {
// do something with subF

}
(remember you can’t use “f” as the for-each var name b/c “” is the parameter)
And what do we want to do for each subfile?

System.out.println (" " + subF.getName ())

But if | run it again and ask for a file (e.g. Crawler.java), | get a NullPointerException
o Why?
m Because if there are no sub-files, listFiles() returns null, and null can’t be used in a
for-each loop
o So we ONLY want to do the listFiles() if the File is a directory
o It turns out we can use the handy “isDirectory()” method of Files
public static void print(File f) {
System.out.println (f.getName ()) ;

if (f.isDirectory()) {
for (File subF : f.listFiles()) {
System.out.println (" " + subF.getName ())

o A decent iterative solution start to the program
o Doesn’t show EVERYTHING in the directory - no subdirectories
o This is a very important moment in this program development - you must understand what
is about to happen

o Our code doesn’t deal with directories within directories

m Some of the subF’s may be directories
o So you might be tempted to do something like this:

public static void print(File f) {

System.out.println (f.getName ()) ;

if (f.isDirectory()) {
for (File subF : f.listFiles()) {
System.out.println (% “ 4+ subF.getName())
if (subF.isDirectory()) {

}

o That’s the wrong way of thinking about it, and it won’t work

m What if there are sub-sub-sub directories?

m You don’t know the depth beforehand

m In fact, there isn’t an easy iterative solution
o Instead, think about it recursively

m What is the method that we’re writing?
(it prints out the name (and contents) of a file (or directory))
Our problem is that files and directories may be handled differently
But the answer is often staring you in the face
In the for-loop, we find ourselves wanting to print either a file or a directory
But we already wrote a method to do that!

m “If only we had a method...”
m (note that I'm not making fun - I'm just emphasizing how simple the answer can really
be)
public static void print(File f) {
System.out.println (f.getName()) ;
if (f.isDirectory()) {
for (File subF : f.listFiles()) {
print (subF) ;

e (runit)
e This is almost right, but doesn’t deal with any indentation

o So deeper directories/files should be indented more

o How can we do this?

o We need another parameter!

public static void print(File £, int level) {
for (int i = 0; 1 < level; i++) {
System.out.print (" ")

}
System.out.println (f.getName());

}
o public, private pair
o Important to do level + 1 when recursing, not level++ (explain why)
e Sierpinski fractal example
o Replace each triangle with 3 smaller triangles

