Lecture 9: Advanced Linked Lists
e Your assignment: Assassin
o Demo
e \Warning: this assignment is hard - linked lists are hard
o Don'’t procrastinate on this assignment
o As a medium hint, we’ll consider another problem
o LinkedIntList doesn’t really need a second constructor like ArraylntList (no capacity)
o But what if we wanted a constructor that takes an integer n and counts down?
LinkedIntList (10) ----- > [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
o Well, let’s consider the simplest case first
m Whatif nis 0? What do we do? (draw)
ListNode temp;
temp = new ListNode (0) ;
front = temp;
o Now what if nis 1?7 We start with what we had before, but need to add a 1 onto the front
temp = new ListNode (1, front);
front = temp;
o Now what if n is 27 We start with what we had before, but add a 2 to the front
temp = new ListNode (2, front);
front = temp
o What's the pattern? What do we want to do repeatedly (i.e. in a loop?)
for (int i = 1; 1 <= n; 1i++) {
ListNode temp = new ListNode (i, front);
front = temp;
}
o What about the front case?
m Outside the loop
m But actually can go inside the loop - it doesn’t hurt to use “null” in the 2-arg

constructor
o We actually don’t need the temporary variable
front = new ListNode (i, front);

This might make you concerned - front on both sides!
The right-hand side is evaluated first - the object creation
Then the left-hand side (assignment) is evaluated
Equivalentto “x=x+ 1"
It does work, but if you’re uncomfortable stick with the 2-line version
public LinkedIntList (int n) {
front = null;
for (int i = 0; 1 <= n; 1i++) {
front = new ListNode (i, front);

Another problem: addSorted
o Assuming the list is already in sorted (nondecreasing) order, adds a value to the list to
preserve the ordering
// pre : list is in sorted (nondecreasing) order
// post: given value is added to the list so as to preserve
// (nondecreasing) order, duplicates allowed
public void addSorted(int wvalue) {

}
o This is a very complicated problem

First: adding in the middle of the list

Ex. [2, 5, 12] and add 10

o Where does it belong? Why?

o How do we write this as a loop?

m Does it belong in front of the 27 In front of the 57 In front of the 127?
ListNode current = front;

o

while (current.data < value)
current = current.next;
o This is the core of the right idea, but what’s wrong?
m Ends up positioning us at the wrong spot
m Remember - have to change either FRONT or a ~.NEXT
m So what do we need to change in this case? (the node w/5’s .next)
o Better:
ListNode current = front;
while (current.next.data < value)
current = current.next;
Now we stop when our value is just barely less than the value we want to insert
Now we need to create a new node....
new ListNode (value, current.next)
...and then link it into the list
current.next = new ListNode (value, current.next);
o (if you want, you can use a temporary variable)
What if we want to add 137
o What will happen? (simulate) - NullPointerException
o Problem: our code depends on the fact that there is a node with a value GREATER than
the value we want to insert
o So we need an extra test to make sure we don’t run off the end:
while (current.next.data < value && current.next != null)

o

AN AN AN A A A A A A N A A A A A A N A A A A A A A NN N AN AN A A A A N A A A A A A A A A

sensitive test robust test
This also doesn’t work - because we'll still execute the first test and throw an exception
Combination of “sensitive” and “robust” tests
In order to make it work, reverse the tests
m “Short-circuited evaluation” - Java stops as soon as the first test is FALSE

e Another case: what if we want to add 1 to the list?
o What will happen? (simulate)
o Will add AFTER the first node instead of before
o Why is this different?
m (must change FRONT rather than current.next)
o OK, so in some cases we want to change front
m Which cases?
m What do we want to do in that case?
e Solet’stryit:
o Create a new list, then call addSorted 2, 5, 12, 10, 1, 13
o But throws a null pointer exception! uh oh
e This code will still break
if (value <= front.data) {

front = new ListNode (value, front);

}

ListNode current = front;

while (current.next != null && current.next.data < value)
current = current.next;

current.next = new ListNode (value, current.next);

o What if the front is null? Then front.data test will fail
o We need special test for the front being null
o What do we do in this case?
m Add to the front!
m Extra case - BUT can actually be the same as adding before the first element
o Test:
if (value <= front.data || front == null) {
But this is still wrong! Why?
m Same example of a sensitive test - if front is null, front.data will throw an exception
o Short-circuited evaluation works on OR tests as well
e So many cases to consider in this example!
o middle
o front
o back
o empty
(show parts of the tests pertaining to each case)
e Another approach: keep a “prev” pointer - “inchworm” approach

o

o

e Final 2 versions:
// pre : list is in sorted (non-decreasing) order
// post: given value inserted into list so as to preserve sorted order
public void addSorted(int wvalue) {
if (front == null || value <= front.data)
front = new ListNode (value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value)
current = current.next;
current.next = new ListNode (value, current.next);

public void addSorted(int wvalue) {

if (front == null || value <= front.data)
front = new ListNode (value, front);
else {
ListNode prev = front;
ListNode current = front.next;
while (current != null && current.data < value) {
prev = current;
current = current.next;

}

prev.next = new ListNode (value, prev.next);

