Lecture 8: Linked Lists
e Review of references
o How many objects are in this picture?
o How many references are in this picture? (phone #s)
e In section yesterday, you did these little puzzles rearranging nodes
o But what if the list was really long?
o You don’t want to say list.next.next......... next....... next
o Also you may not know exactly how long the list is
o What can we do?
m Add a loop!
m That’s what we’re going to do for most linked list code
e Let's say we have a list containing a chain of linked nodes, and we want to print out the values in
the chain, one per line
o Pseudocode:
start at the front of the list
while (there are more nodes to print):
print the current node’s data
go to the next node

o Code 1:
while (list != null) {
System.out.println(list.data);
list = list.next;

}
o Doesn’t work b/c we lose the front of the list!

m So we need a “temporary reference” that moves through the list
m (draw the picture of “list” moving)

o Code 2:
ListNode current = list;
while (current != null) {

System.out.println (current.data);
current = current.next;
}
(draw the picture on a 3-element list)
Why can we do this when we can’t change list?
m Because a reference is not an object
o What would the same code look like for an ArrayIntList?
int 1 = 0;
while (i < size) {
System.out.println (elementDatal[i])
i++;

for (int i1 = 0; i < size; 1i++) {
System.out.println(elementDatal[i]) ;

}
m Some insights:

o inti=0; - > ListNode current = list;
e <size, = - > current = null;
o j++; e > current = current.next;
e elementData[i] ------------ > current.data
m We can actually write linked list code with a for loop!
for (ListNode cur = list; cur != null; cur = cur.next)

System.out.println(cur.data);
m But usually we use while loops
e | think we now have the basics we need to actually build a linked list
o Remember that the List abstract type has things like “add”, “remove”, “get”....
o Same external behavior, but now we’re changing the implementation from arrays to linked
nodes
o Again, we’re only going to consider integers - LinkedIntList
o And will use ListNode to store the data
e Create our LinkedIntList class
o What fields do we need?
m The front of the list - “front”
m The size of the list - “size”
m The back of the list - “back”
o But to start with we’re only going to use the front - all the others are not necessary for
correctness
This field will be PRIVATE, good encapsulation
We’ll end up with 2 classes/files - the node and the list
m We can use public fields in the node class because we will never let clients get
access to our nodes - they will only see ints through add, remove, get....
m If the clients can never modify our state, then those public fields in the node doesn’t
matter
m Client can create their own nodes and modify them, but they can’t corrupt the list’s
state
o Analogy: painting my house
m Painter 1: I'll paint the house but you have to carry the paint around
m Painter 2: I'll paint the house and you don’t have to touch the paint
m Painter 3: I'll paint the house and use special paint cans that won’t get me dirty
m Painter 2 is best because | don’t get dirty, and | don’t particularly care if the painter
gets dirty
e Simple constructor (no args)
o What do we initialize our field to? How do we represent an “empty” list?
o Frontis null (note we don’t actually need this constructor)

Simple add at the end
o Assume we already have a list with three nodes in it (draw a picture)
o So first we have to get to the end (in order to add there)
m Start with the code we had before:

ListNode current = front;
while (current != null)
current = current.next;

o (draw the picture)
Then we could execute this line of code
current = new ListNode(17);
o But wait a sec - we haven’t added it properly (draw picture)
m It’s like threading beads onto a necklace - we’ve dropped the necklace!
m Or jumping between train cars - jumping off the caboose
o There are only TWO ways to change the contents of a list
m Change “front”
m Change “<something>.next”
o So to add properly, we must change “<something>.next” - which .next?
m The last node currently in the list
m \We must “stop one early” - stop at the last node, and then change that node’s .next
m How do we know we’re at the last node? it’s .next field is null
But is this correct?
m We immediately test current.next != null
m Could fail if current is null, because asking for “null.next” throws an exception
m So we need a special front case (this is very common)
if (front == null) {
front = new ListNode (value);

O

}
m Note that this is the other way to change a list (modifying front)
How about “size()”? Counting the number of nodes in the list?

int size = 0;
ListNode cur = front;
while (cur != null) {

cur = cur.next;

size++;
}

return size;

e How about get at an index?
o Well, we start at the beginning
o Go for “index” number of times
o And that’s the node we’re looking for
o Any preconditions?
// Precondition: 0 <= index < size()

ListNode cur = front;
for (int i = 0; 1 < index; 1i++) {
cur = cur.next;

}
return cur.data
e And now, remove(index)
o How would you remove (draw the pictures, 3 elements, remove element 2)
ListNode cur = front;
for (int i = 0; 1 < index - 1; i++) {
cur = cur.next;
}
cur.next = cur.next.next;
o Remember, stop one early
o How would you remove the front element?
front = front.next;
e And finally, add(index, value)
public void add(int index, int value) {

if (index == 0) {
front = new ListNode (value, front);
} else {
ListNode current = front;
for (int 1 = 0; 1 < index - 1 ; i++) {
current = current.next;
}
ListNode temp = new ListNode(value, current.next);
current.next = temp;

o (draw the pictures)
e Other things to talk about:
o throw exceptions
o set, toString, indexOf, clear
o Common special cases
m middle
m front
m back
m empty
o Stop one early, vs. go all the way - what cases?

