Building Java Programs

Chapter 13
Lecture 13-1: binary search and complexity
reading: 13.1-13.2

Sequential search

- sequential search: Locates a target value in an array / list by examining each element from start to finish. Used in indexOf.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	

- The array is sorted. Could we take advantage of this?

Binary search (13.1)

- binary search: Locates a target value in a sorted array or list by successively eliminating half of the array from consideration.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

Arrays.binarySearch

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted Arrays.binarySearch (array, value)
// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch (array, minIndex, maxIndex, value)

- The binarySearch method in the Arrays class searches an array very efficiently if the array is sorted.
- You can search the entire array, or just a range of indexes (useful for "unfilled" arrays such as the one in ArrayIntList)

Using binarySearch

```
// index 0
int[] a = {-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};
int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7
```

- binarySearch returns the index where the value is found
- if the value is not found, binarySearch returns:
-(insertionPoint + 1)
- where insertionPoint is the index where the element would have been, if it had been in the array in sorted order.
- To insert the value into the array, negate insertionPoint +1 int indexToInsert21 = -(index2 + 1); // 6

Runtime Efficiency (13.2)

- How much better is binary search than sequential search?
- efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- Assume the following:
- Any single Java statement takes same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

Efficiency examples

statement1; statement2; $\succ 3$ statement3;

```
for (int i = 1; i <= N; i++)
    statement4;
}
for (int i = 1; i <= N; i++)
    statement5;
    statement6;
    statement7;
```

\}

$4 N+3$

Efficiency examples 2

```
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++)
        statement1;
    }
}
for (int i = 1; i <= N; i++) {
statement2;
    statement3;
    statement4;
    statement5;
}
- How many statements will execute if \(\mathrm{N}=10\) ? If \(\mathrm{N}=1000\) ?
```


Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N .
- growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}}+\mathbf{2 5} \mathbf{N}^{\mathbf{2}}+\mathbf{8 N}+17$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N.
- The highest-order term (N^{3}) dominates the overall runtime.
- We say that this algorithm runs "on the order of" N^{3}.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")

Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5 * 10^{61}$ years

Complexity classes

Sequential search

- What is its complexity class?

```
public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
        return i;
        }
    }
    return -1; // not found
```

\}

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- On average, "only" N/2 elements are visited
- $1 / 2$ is a constant that can be ignored

Collection efficiency

- Efficiency of our ArrayIntList or Java's ArrayList:

Method	ArrayList
add	$\mathrm{O}(1)$
add (index, value)	$\mathrm{O}(\mathrm{N})$
indexOf	$\mathrm{O}(\mathrm{N})$
get	$\mathrm{O}(1)$
remove	$\mathrm{O}(\mathrm{N})$
set	$\mathrm{O}(1)$
size	$\mathrm{O}(1)$

Binary search

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 42 ?
- What is the runtime complexity class of binary search?

Binary search runtime

- For an array of size N, it eliminates $1 / 2$ until 1 element remains.

$$
N, N / 2, N / 4, N / 8, \ldots, 4,2,1
$$

- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N ?

$$
1,2,4,8, \ldots, N / 4, N / 2, N
$$

- Call this number of multiplications "x".

$$
\begin{aligned}
& 2^{x}=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic complexity class.

Max subsequence sum

- Write a method maxsum to find the largest sum of any contiguous subsequence in an array of integers.
- Easy for all positives: include the whole array.
- What if there are negatives?

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Largest sum: $10+15+-2+22=45$

- (Let's define the max to be 0 if the array is entirely negative.)
- Ideas for algorithms?

Algorithm 1 pseudocode

```
maxSum(a):
max = 0.
for each starting index i:
    for each ending index j:
        sum = add the elements from a[i] to a[j].
    if sum > max,
                        max = sum.
```

return max.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 1 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{3}\right)$. Takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
        // sum = add the elements from a[i] to a[j].
        int sum = 0;
        for (int k = i; k <= j; k++) {
                        sum += a[k];
        }
        if (sum > max) {
        max = sum;
        }
    }
    }
    return max;
}
```


Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
- For example, we compute the sum between indexes 2 and 5 : $a[2]+a[3]+a[4]+a[5]$
- Next we compute the sum between indexes 2 and 6: $a[2]+a[3]+a[4]+a[5]+a[6]$
- We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
- Let's write an improved version that avoids this flaw.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 2 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{2} \mathbf{)}\right.$. Can process tens of thousands of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
        }
    }
    return max;
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline value & 2 & 1 & -4 & 10 & 15 & -2 & 22 & -8 & 5 \\
\hline
\end{tabular}
```


A clever solution

- Claim 1 : A max range cannot start with a negative-sum range.

i	\ldots	j
$\mathrm{j}+1$		\ldots
$\operatorname{sum}(i, k)<\operatorname{sum}(j+1, k)$		

- Claim 2 : If $\operatorname{sum}(i, j-1) \geq 0$ and $\operatorname{sum}(i, j)<0$, any max range that ends at $j+1$ or higher cannot start at any of i through j.

- Together, these observations lead to a very clever algorithm...

Algorithm 3 code

- What complexity class is this algorithm?
- $\mathbf{O}(\mathbf{N})$. Handles many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
        i = ji // cannot start with any of i - j-1
        sum = 0; // (Claim 2)
        }
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
    }
    return max;
}
```

