
Lecture 3: More ArrayIntList 
 ∗Assignment 1 
  o Due next Thursday 
  o Like ArrayIntList, uses arrays to store data 
  o Stores a collection of letters 
  o Seems kind of boring, but good review, and we will use it later in the quarter 
  o Resources 
    Style/commenting guides § IPL 
    Message board 
 ∗ A summary of our ArrayIntList so far  
  o Added: a second add() method 
    First add calls the second add - less redundancy  
  o Added: a set() method 

 Why isn’t it enough to have add() and remove() (which could 
do it)?  

  o More extensive exception checks 
  o More commenting 

 This stuff is HARD! We are picky o An extra private exception 
check method 
 Must follow the public interface of the spec EXACTLY 
 What if you work for a company 
 Write a “quick and dirty version”, then “nice version” 
 What if the first version had extra methods? People might use 
them  

     INCLUDES CONSTRUCTORS 
 ∗ A common operation - adding all element of another structure  
  o addAll(ArrayIntList other) 
                public void addAll(ArrayIntList other) { 
                     for (int i = 0; i < other.size(); i++) 
                         add(other.get(i)); 
    } 
  o Start by calling add() using accessor methods 
  o But it can be more efficient to access fields directly 
    public void addAll(ArrayIntList other) { 
                     for (int i = 0; i < other.size; i++) 
                         add(other.elementData[i]); 
    } 

o Sometimes you can’t solve the problem at all without field access 
o Very useful for your homework - you’ll also have to do some kind of 
“bulk” method with another object as a parameter  

∗ Another issue with our code: if we run out of room! 
 o Sometimes you will add enough to exceed the capacity 
 o What should you do? 
  § We can’t grow the array, because of how it is stored on the 
computer  
  § Must be CONTIGUOUS - that’s how access is fast 



  § Would overwrite some other objects 
 o Create a new, bigger array, and copy things over § How much should 
we increase the size? 
  ∗ By 1 --> very inefficient 

∗ Double --> if we grow from 100 to 200, only have to copy once 
∗ “Amortized” - spread out over the 200 adds, the cost of growth is 
small 
∗ Actual Java ArrayList - 50% 

  Can use Arrays.copyOf() 
public void ensureCapacity(int capacity) { 
     if (capacity > elementData.length) { 
         int newCapacity = elementData.length * 2 + 1; 
         if (capacity > newCapacity) { 
             newCapacity = capacity; 
         } 
         elementData = Arrays.copyOf(elementData, 
newCapacity); 
     } 
} 
 
 
∗Summary 

o private fields 
o class constants for “magic numbers” 
o initialize fields in the constructor 
o use “this()” to reduce redundancy in constructor calls 
o throw exceptions to prevent misuse of your code 
o document all preconditions (including exceptions), postconditions 
o boolean zen when dealing with boolean expressions 
o when overloading methods, have more general call more specific method 
o add private helper methods if needed 
o Can access private fields of object in methods of the same class	  


