Lecture 3: More ArrayintList
+Assignment 1

o Due next Thursday
o Like ArraylIntList, uses arrays to store data
o Stores a collection of letters
o Seems kind of boring, but good review, and we will use it later in the quarter
o Resources
= Style/commenting guides §= IPL
= Message board

+ A summary of our ArraylIntList so far

o Added: a second add() method
= First add calls the second add - less redundancy
o Added: a set() method
= Why isn’t it enough to have add() and remove() (which could
do it)?
o More extensive exception checks
o More commenting
= This stuff is HARD! We are picky o An extra private exception
check method
= Must follow the public interface of the spec EXACTLY
= What if you work for a company
= Write a “quick and dirty version”, then “nice version”
= What if the first version had extra methods? People might use
them
= INCLUDES CONSTRUCTORS

+ A .common operation - adding all element of another structure

o addAll(ArrayIntList other)
public void addAll (ArrayIntList other) {
for (int 1 = 0; i < other.size(); i++)
add (other.get (1)) ;
}
o Start by calling add() using accessor methods
o But it can be more efficient to access fields directly
public void addAll (ArrayIntList other) {
for (int i = 0; i < other.size; i++)
add (other.elementDatal[i]) ;
}
o Sometimes you can’t solve the problem at all without field access
o Very useful for your homework - you’ll also have to do some kind of
“bulk” method with another object as a parameter

+ Another issue with our code: if we run out of room!
o Sometimes you will add enough to exceed the capacity
o What should you do?

computer

§= We can’t grow the array, because of how it is stored on the

§= Must be CONTIGUOUS - that's how access is fast



§= Would overwrite some other objects
o Create a new, bigger array, and copy things over §= How much should
we increase the size?
= By 1 --> very inefficient
x Double --> if we grow from 100 to 200, only have to copy once
= “Amortized” - spread out over the 200 adds, the cost of growth is
small
= Actual Java ArrayList - 50%
= Can use Arrays.copyOf()
public void ensureCapacity(int capacity) {
if (capacity > elementData.length) {
int newCapacity = elementData.length * 2 + 1;
if (capacity > newCapacity) {
newCapacity = capacity;
}
elementData = Arrays.copyOf (elementData,
newCapacity);
}
}

sSummary

private fields

class constants for “magic numbers”

initialize fields in the constructor

use “this()” to reduce redundancy in constructor calls

throw exceptions to prevent misuse of your code

document all preconditions (including exceptions), postconditions
boolean zen when dealing with boolean expressions

when overloading methods, have more general call more specific method
add private helper methods if needed

Can access private fields of object in methods of the same class

O 0 0O 0 O O O O O O



