
Lecture 2: ArrayIntList design
• (ADD CONSTRUCTOR CALLS)

§ Use debugger to show what happens - each has its own elementData and size
§ But elementData is set to NULL - special 0-equivalent meaning “no value”

• We never told it to construct a new array!
§ We could initialize it when declared, but this is BAD

• Job of the constructor, a special method called when you create a new object
using new

§ Constructor has special syntax - no return type, same name as the class
• This is how Java knows to call it when you say new

§ ADD A CONSTRUCTOR
• But we didn’t have one before - why could we create one before?
• Because Java provides you a default constructor if you don’t specify one
• If you provide a constructor, then Java assumes you know what you are doing
• Initializes size and elementData

o Better style to initialize fields in constructor - will LOSE POINTS
• But doesn’t technically need to initialize size, since already 0 - up to you

§ Rerun debugger - now elementData is initialized to size 100
o Adding to the list

§ Could directly manipulate elementData, size
list1.elementData[0] = 1;
list1.elementData[1] = 82;
list1.elementData[2] = 97;
list1.size = 3;

§ What’s the problem?
§ Not very “object-oriented approach”

• Don’t want client to deal with the nitty-gritty details
• What if you had to dig inside the transistors of the radio to change the channel?

§ Instead, the ArrayIntList itself should know how to add a value to it
§ Have an add method called from the client code - each time indicate which value to

add
• CHANGE THE CLIENT CODE

§ Takes a parameter that is the value to add, and will add to the end of the list
o How do we figure out where to add to the list?

 list contents size where to add

 [] 0 elementData[0]
 [1] 1 elementData[1]
 [1, 82] 2 elementData[2]
 [1, 82, 97] 3

o Size --> where to add, and then size goes up by one
 elementData[size] = value;
 size++;

o What parameters does the add method need? Obviously the value
§ But how does the method get access to size/elementData?

• An object knows its own fields
§ We’re saying “Hey list1, I’m talking to you! Execute your add method with value of 1!)

• “Implicit parameter” - modify fields of the object you’re talking to.

o Great! Now let’s print out the lists (ADD PRINTLN)
§ Doesn’t give us much information
§ Java also automatically gives you a toString method (just like a constructor) but it’s not

very good.
§ Let’s write our own
§ Print out values, comma-separated, between brackets
 public String toString() {
 if (size == 0) {
 return "[]";
 } else {
 String result = "[" + elementData[0];
 for (int i = 1; i < size; i++)
 result += ", " + elementData[i];
 result += "]";
 return result;
 }
 }

o I want to talk about encapsulation - back to the radio
§ Normally electronics have a plastic/metal case
§ The innards are encapsulated - cannot be seen or manipulated
§ On the back usually some kind of plate with screws with message “Do not remove,

warranty void if removed”
§ Why the warning?

• User could break something
§ Something similar can happen with our class

• What is it?
 list1.size = 10000;
 list2.size = -384;

§ How to prevent it?
• MAKE FIELDS PRIVATE
• RERUN - now won’t compile
• This is VERY important - style points!

§ But client probably still wants to know the size
• ADD SIZE METHOD - getter. This is typical
• PRINT the size in client
• aka “What station is the radio set to?”

o Other methods that the client might want to look at the list?
§ GET
§ Are there any problems with this?

• Pre/post conditions - the contract
• Assumptions that are made in order for the method to work
• If client violates them, anything could happen
• You MUST comment these in your code

§ If we want to do more, we can throw an exception
• IndexOutOfBoundsException (must be COMMENTED)
• We create a new Exception object and THROW it - stops execution
• Exception object contains information about what happened when it was created

o The info you see when you look in your console at runtime
• Can also pass a String with more info to the Exception

§ Sometimes we create a special method just for the exception check
• indexOf

for (int i = 0; i < size; i++) {
 if (elementData[i] == value) {
 return i;
 }
}
return -1;

• contains
o Not necessary, because client can use indexOf, but typical
o What should the return type be?
o BOOLEAN ZEN - write with an if/else, then say why it’s bad (ch. 5)

return indexOf(value) != 0;
• isEmpty

return size == 0;
• remove(index) - must shift everything over. Don’t need to set last thing to 0.

checkIndex(index);
for (int i = index; i < size - 1; i++) {
 elementData[i] = elementData[i + 1];
}
size--;

• add(index, value) - must shift everything over (MUST go backwards)
if (index < 0 || index > size) {
 throw new IndexOutOfBoundsException("index: " + index);
}
if (size + 1 > elementData.length) {
 throw new IllegalStateException("would exceed list capacity");
}
for (int i = size; i > index; i--) {
 elementData[i] = elementData[i - 1];
}
elementData[index] = value;
size++;

• Back to the constructor
o The size of 100 - what’s the problem? Not very flexible
o So instead, let’s let the user tell us

§ Take a parameter in the constructor
 public ArrayIntList(int capacity) {
 elementData = new int[capacity];
 size = 0;
 }
§ CHANGE CLIENT

o But what if the user doesn’t know how big? ex. reading a file
§ We still want some kind of default
§ Try changing client code to remove the parameter!
§ But now we can’t use the default constructor
§ Java provides you a default constructor, but only if you don’t have any

constructors
• Assumes you know what you’re doing

§ So add a default constructor
 public ArrayIntList() {
 elementData = new int[100];
 size = 0;
 }

o This is ok, but not good style (LOSES POINTS)
§ We usually have one constructor that does most of the work
§ Other constructors call the main constructor (just like a method call)
 public ArrayIntList() {
 this(100);
 }
§ But this doesn’t work:
 public ArrayIntList() {
 this();
 }

o Finally, one last thing should make you uncomfortable
§ The 100
§ Why? It’s arbitrary
§ We should make it a class constant
§ Why ok for class constant to be PUBLIC?

• Because it cannot be changed

