
Lecture 1 (6/24)
• Introduction: course website - your go-to for all information!

o Syllabus
§ Office hours (except this week)
§ Discussion section
§ Grading scheme
§ Exams - closed book
§ Late days
§ Cheating policy

o Working at home (jGrasp)
o IPL
o Message board

• Overview of the course
o CSE 142

§ Control structures
• methods: params/returns
• if/else
• for loops/while loops

§ Data structures
• int/double/char... (primitives)
• Files, Scanners
• arrays
• Objects (Critters - state and behavior - the focus of this

course)
o CSE 143

§ More data structures
• ArrayList, LinkedList
• Binary trees

§ More control structures
• Recursion

§ OOP
• Interfaces
• Inhereritance

o Central theme: client view vs. implementation view
§ Who knows how to use a radio?
§ Who knows how to build a radio from parts at RadioShack?
§ Client view: knowing what object is, how to use it
§ Implementation view: knowing how it works
§ We’ll be switching back and forth, which makes it complicated

• Array review
o Basics - can store many of one type of thing (a whole bunch of buckets)

§ Type (what kind of things are stored)
§ Elements (the things being stored)
§ Length (the number of things that can be stored)

§ Index (a location in the array)
o Operations

§ To create: int[] arr = new int[8];
§ To get: int x = arr[3];
§ To set: arr[4] = 10;
§ For the length: arr.length

o Code: read lines from data.txt into an array
String[] lines = new String[1000];
Scanner input = new Scanner(new File(“data.txt”));
int lineCount = 0;
while (input.hasNextLine()) {
 String line = input.nextLine();
 lines[lineCount] = line;
 lineCount++;
}
String firstLine = lines[0];
String lastLine = lines[lines.length - 1];
for (int i = lines.length - 1; i >= 0; i--) {
 System.out.println(lines[i]);
}

o What’s wrong with the previous code?
§ Fixed size - will print out lots of nulls at the end
§ Could fix by changing lineCount for lines.length
§ But a better solution: ArrayList

• ArrayList
o Fits our idea of a list: can add something, can remove things, can change size

§ Probably the most commonly used data structure in Java
o Starts out empty, you can add things to it, keeps track of the order
o When you create a new ArrayList, you have to tell Java what type of thing

you’re putting in it
§ “Generics” - new, allows lists to store different types of things

o Translation:
// translation from array to ArrayList:
// String[] => ArrayList<String>
// new String[10] => new ArrayList<String>()
// a.length => list.size()
// a[i] => list.get(i)
// a[i] = value; => list.set(i, value);
// new operations:
// list.remove(i); --remove the ith value
// list.add(value); --appends a value
// list.add(i, value); --adds at an index
// list.clear() --remove all value
// list.toString(); --nice String of the list

o Guide: the Java API
§ “Collections framework” - a bunch of really good tools (we’ll discuss)

o Rewrite code with ArrayList:

ArrayList<String> lines = new ArrayList<String>();
Scanner input = new Scanner(new File(“data.txt”));
while (input.hasNextLine()) {
 String line = input.nextLine();
 lines.add(line);
}
String firstLine = lines.get(0);
String lastLine = lines.get(lines.size() - 1);
for (int i = lines.size() - 1; i >= 0; i--) {
 System.out.println(lines.get(i));

}
o You can also write code with integers, for example:

§ But must use WRAPPER class
ArrayList<Integer> list2 = new
ArrayList<Integer>();
list2.add(42);
list2.add(3);
list2.add(-1);
list2.add(0);
list2.add(101);
int first = list2.get(0);
int numElements = list2.size();
System.out.println(“list2 = “ + list2);

• Implementing ArrayList
o We just talked about the client view - how to use ArrayList
o Let’s look inside it - implementation view

• Lets us talk about how to design structures
• Useful for general programming of objects/classes
• “Software cadaver” - just like med students dissect cadavers,

we’re dissecting software
o If I showed you Java’s ArrayList now, you’d all drop the course

• It’s scary, so we’ll start simpler - design our own ArrayIntList class
• Only stores int values
• But still not simple enough - we’ll develop the code in stages
• In the end - something that closely resembles ArrayList

o First, we need to know how to USE an ArrayList, so we know what kinds of
things we’ll need

• ArrayIntListClient
• Let’s have it do some basic operations
• As the name says, we’re going to implement it with an array
• What do we need to represent the data?

o Need the array
o Need the size
o But we’d need 2 arrays and 2 sizes to represent the two lists

o How can we do it?
• Same idea as with the “data.txt” example, but ENCAPSULATED
• Unfilled array

• Let’s create a new ArrayIntList class
o The array and the size become our FIELDS
o elementData --> parallels Java’s version
o Not like local variables - they are the STATE or innards of the object, one set

per instance of the object
• e.g. each radio has its own circuitry inside, each car has its own

steering wheel
• Stay around indefinitely - don’t “disappear” when they go out of

scope
• So now instead of 4 variables, we have 2 objects

• (ADD CONSTRUCTOR CALLS)
o Use debugger to show what happens - each has its own elementData and

size
o But elementData is set to NULL - special 0-equivalent meaning “no value”

• We never told it to construct a new array!
o We could initialize it when declared, but this is BAD

• Job of the constructor, a special method called when you create a
new object using new

o Constructor has special syntax - no return type, same name as the clasa
• This is how Java knows to call it when you say new

